
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Exploring Potential U.S. Switchgrass Production for Lignocellulosic Ethanol
doi: 10.2172/936551
In response to concerns about oil dependency and the contributions of fossil fuel use to climatic change, the U.S. Department of Energy has begun a research initiative to make 20% of motor fuels biofuel based in 10 years, and make 30% of fuels bio-based by 2030. Fundamental to this objective is developing an understanding of feedstock dynamics of crops suitable for cellulosic ethanol production. This report focuses on switchgrass, reviewing the existing literature from field trials across the United States, and compiling it for the first time into a single database. Data available from the literature included cultivar and crop management information, and location of the field trial. For each location we determined latitude and longitude, and used this information to add temperature and precipitation records from the nearest weather station. Within this broad database we were able to identify the major sources of variation in biomass yield, and to characterize yield as a function of some of the more influential factors, e.g., stand age, ecotype, precipitation and temperature in the year of harvest, site latitude, and fertilization regime. We then used a modeling approach, based chiefly on climatic factors and ecotype, to predict potential yields for a given temperaturemore » and weather pattern (based on 95th percentile response curves), assuming the choice of optimal cultivars and harvest schedules. For upland ecotype varieties, potential yields were as high as 18 to 20 Mg/ha, given ideal growing conditions, whereas yields in lowland ecotype varieties could reach 23 to 27 Mg/ha. The predictive equations were used to produce maps of potential yield across the continental United States, based on precipitation and temperature in the long term climate record, using the Parameter-elevation Regressions on Independent Slopes Model (PRISM) in a Geographic Information System (GIS). Potential yields calculated via this characterization were subsequently compared to the Oak Ridge Energy Crop County Level data base (ORECCL), which was created at Oak Ridge National Laboratory (Graham et al. 1996) to predict biofuel crop yields at the county level within a limited geographic area. Mapped output using the model was relatively consistent with known switchgrass distribution. It correctly showed higher yields for lowland switchgrass when compared with upland varieties at most locations. Projections for the most northern parts of the range suggest comparable yields for the two ecotypes, but inadequate data for lowland ecotypes grown at high latitudes make it difficult to fully assess this projection. The final model is a predictor of optimal yields for a given climate scenario, but does not attempt to identify or account for other limiting or interacting factors. The statistical model is nevertheless an improvement over historical efforts, in that it is based on quantifiable climatic differences, and it can be used to extrapolate beyond the historic range of switchgrass. Additional refinement of the current statistical model, or the use of different empirical or process-based models, might improve the prediction of switchgrass yields with respect to climate and interactions with cultivar and management practices, assisting growers in choosing high-yielding cultivars within the context of local environmental growing conditions.« less
- University of North Texas United States
- University of Nebraska System United States
- University of Nebraska System United States
- Oak Ridge National Laboratory United States
- University of North Texas United States
Yield, Fossil Fuels, Switchgrass, 550, Climate, Policy And Economy, Motors, Crops, Empirical Model, Precipitation, Climates, 333, 630, 09 Biomass Fuels, Biomass, Schedules, Bioresource and Agricultural Engineering, Ethanol, Statistical Models, Production, Climatic Change, Weather Switchgrass, Management, Panicum Virgatum, Fertilization, Biofuels, 29 Energy Planning, Geographic Information Systems, Forecasting
Yield, Fossil Fuels, Switchgrass, 550, Climate, Policy And Economy, Motors, Crops, Empirical Model, Precipitation, Climates, 333, 630, 09 Biomass Fuels, Biomass, Schedules, Bioresource and Agricultural Engineering, Ethanol, Statistical Models, Production, Climatic Change, Weather Switchgrass, Management, Panicum Virgatum, Fertilization, Biofuels, 29 Energy Planning, Geographic Information Systems, Forecasting
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).35 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
