Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Environment Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Water Environment Research
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PolyPublie
Article . 2012
Data sources: PolyPublie
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of Long Exposure to Low Temperatures on Nitrifying Biofilm and Biomass in Wastewater Treatment

Authors: Robert Delatolla; Alain Gadbois; Yves Comeau; Nathalie Tufenkji; Daniel Lamarre; Dimitrios Berk;

Effects of Long Exposure to Low Temperatures on Nitrifying Biofilm and Biomass in Wastewater Treatment

Abstract

Attached growth biological treatment systems are a promising solution to ammonia removal in cold‐temperature climates. Environmental scanning electron microscopy (ESEM) and confocal laser scanning microscopy in combination with fluorescent in situ hybridization (FISH) was used to investigate the effects of 4 months of exposure to 4 °C on nitrifying biofilm and biomass. These molecular and microscopic methods were modified to minimize loss of mass and distortion of in situ perspectives. Environmental scanning electron microscopy revealed that nitrifying biofilm did not exhibit significant changes in volume with exposure to 4 °C. Confocal laser scanning microscopy in combination with FISH showed that the number of ammonia‐oxidizing bacteria (AOB) cells present in the biofilm was statistically consistent during exposure to 4 °C. The RNA content of AOB cells remained sufficient for FISH enumeration. The number of nitrite‐oxidizing bacteria cells remained steady during exposure to 4 °C; however, the RNA content of the cells appeared to decrease with exposure to 4 °C, thereby preventing their enumeration using FISH.

Country
Canada
Keywords

Canada, Microscopy, Confocal, Time Factors, Nitrification, Water Purification, Cold Temperature, Biofilms, Proteobacteria, Microscopy, Electron, Scanning, Biomass, In Situ Hybridization, Fluorescence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Average
Related to Research communities
Energy Research