

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impact of formate on the growth and productivity of Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 grown on syngas.

The current energy model based on fossil fuels is coming to an end due to the increase in global energy demand. Biofuels such as ethanol and butanol can be produced through the syngas fermentation by acetogenic bacteria. The present work hypothesizes that formate addition would positively impact kinetic parameters for growth and alcohol production in Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 by diminishing the need for reducing equivalents. Fermentation experiments were conducted using completely anaerobic batch cultures at different pH values and formate concentrations. PETC cultures were more tolerant to formate concentrations than P7, specially at pH 5.0 and 6.0. Complete growth inhibition of PETC occurred at sodium formate concentrations of 30.0 mM; however, no differences in growth rates were observed at pH 7.0 for the two strains. Incubation at formate concentrations lower than 2.0 mM resulted in increased growth rates for both strains. The most recognizable effects of formate addition on the fermentation products were the increase in the total carbon fixed into acids and alcohols at pH 5.0 and pH 6.0, as well as, a higher ethanol to total products ratio at pH 7.0. Taken all together, these results show the ability of acetogens to use formate diminishing the energy demand for growth, and enhancing strain productivity
The authors thank the Autonomous Government of Catalonia (Generalitat de Catalunya) (2013 FI-DGR) and the Spanish Ministry of Science and Innovation (Best-Energy, CTQ2011-23632, CTM2013-43454-R) for their financial support in this study. LEQUIA and IEA have been recognized as consolidated research groups by the Catalan Government (2014-SGR-1168 and 2014-SGR-2016). RG gratefully acknowledges support from Beatriu de Pinos fellowship (BP-2011-B) and FP7 Marie Curie Career Integration Grants (PCIG13-GA-2013-618593)
- University of Girona Spain
- University of Girona Spain
Clostridium, Ethanol, Formates, Butanols, Hydrogen-Ion Concentration, Culture Media, Biocombustibles, Kinetics, Bioreactors, Biocarburants, Biofuels, Fermentation, Clostridi
Clostridium, Ethanol, Formates, Butanols, Hydrogen-Ion Concentration, Culture Media, Biocombustibles, Kinetics, Bioreactors, Biocarburants, Biofuels, Fermentation, Clostridi
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 132 download downloads 44 - 132views44downloads
Data source Views Downloads DUGiDocs – Universitat de Girona 132 44


