
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of the type of biomass and ashing temperature on the properties of solid fuel ashes

Effects of the type of biomass and ashing temperature on the properties of solid fuel ashes
Abstract Ashes were prepared by annealing selected types of solid fuels (biomass: corn cobs, sunflower husks, olive pomace, hay pellets and rice husks; coal: lignite and bituminous; and alternative fuel: paper sludge) at different temperatures (550°C, 815°C and 975°C). Based on X-ray fluorescence spectra, the slagging/fouling indexes were used to study the effects of the type of ash and the ashing temperature on the ash fouling and slagging properties. Slagging indexes were compared with the ash fusion temperatures. Ash fusion temperatures were measured by a LECO AF-700. The lowest deformation temperature (below 1000°C) was seen for the ashes prepared from hay pellets and corn cobs. On the other hand, the deformation temperature exceeded 1500°C for ashes prepared from paper sludge, sunflower husks and rice husks. By calculating the different slagging/fouling indexes, all the ashes exhibited slagging/fouling problems of varying degrees.
- Technical University of Ostrava Czech Republic
- Vysoká škola báňská-Technická univerzita Ostrava (VŠB Technical University of Ostrava) Czech Republic
- Technical University of Ostrava Czech Republic
- MTA Centre for Energy Research Hungary
- Vysoká škola báňská-Technická univerzita Ostrava (VŠB Technical University of Ostrava) Czech Republic
slagging index, Chemistry, biomass, ash fusion temperature, fouling index, QD1-999, ashing temperature
slagging index, Chemistry, biomass, ash fusion temperature, fouling index, QD1-999, ashing temperature
3 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
