
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biodiesel production from coconut oil
handle: 1959.4/51953
Biodiesel production processes using coconut oil containing a relatively high content of free fatty acids (4.5% w/v and higher) have been characterized using alkali, acid and enzymatic- based catalysts. The use of ethanol (molar ratio of 3:1 of ethanol:triglycerides) instead of methanol was evaluated in all processes. An alkali-based process resulted in rapid conversion of the triglycerides in the coconut oil to esters with an 80% conversion in 5-10 min. However pre-treatment with 0.7% H2SO4 v/v at 50oC for 3 h was required before alkali addition to avoid saponification of the free fatty acids. By comparison, a longer reaction time (50 h) was required for the acid process which also resulted in a lower conversion (67% at 50oC). The use of an acid overcomes the limitations of the alkali process of saponification when high FFA content oils are used, and gave a higher conversion 70% at 75oC after 300 min. By comparison use of an enzymatic (lipase) catalyst (1% w/v) at 50oC resulted in a conversion of 80% in 50 h. The enzyme based process under similar conditions was significantly improved by the use of high frequency sonication which reduced the reaction time to 3 h and achieved a 92% conversion of triglycerides to esters. To further improve the economics of the enzyme process, an initial study showed that the enzyme catalyst was able to be recycled with only a 20% decrease in conversion. The use of the glycerol by-product from the enzyme process as a carbon source for yeast growth resulted in improved kinetics to that for yeast growth on pure glycerol indicating that no inhibitory by-products were produced during the enzyme process. The overall economics of the process, and its sensitivity to key process variables was further analysed using a computer-based model of biodiesel production. It showed that an internal rate of return (IRR) of 30% for a commercial size plant of 4 million litre per annual.
- UNSW Sydney Australia
- UNSW Sydney Australia
Biodiesel production, enzyme, 660, alkali, saponification, acid, ethanol, triglycerides, coconut oil
Biodiesel production, enzyme, 660, alkali, saponification, acid, ethanol, triglycerides, coconut oil
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
