
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Investigating “Lean” Electrodeposited Lithium and Sodium Metal for Hybrid Ion/Metal Carbon Composite Anodes
The implementation of alkali metal anodes in practical batteries have been unsuccessful due to major safety concerns related to dendritic growth and thermal runaway. Carbon scaffolds have been utilized as promising host materials in an effort to improve battery safety and performance. Herein, “lean” lithium and sodium composite anodes, using a semi-crystalline carbon nanofiber (CNF) host material with limited surface functionalization, are utilized to investigate the relationship between the structural characteristics of the CNF and lithium/sodium metal. Symmetric testing reveals that the Na-CNF composite anode maintains stable cycling performance, with minimal hysteresis increase over 2000 hours, whereas Li-CNF fails before 200 hours. When paired with layered oxide cathodes (NaNi0.33Fe0.3Mn0.33Ti0.04O2 and LiNi0.6Mn0.2Co0.2O2 for sodium and lithium cells, respectively) and cycled at 1C, the Na-CNF cells maintain 75% capacity retention after 500 cycles, but the Li-CNF cells fail shortly after 140 cycles. The primary factor enabling stable long-term cycling for Na-CNF cells is that Na ion undergoes reversible ion intercalation, whereas Li ion is limited to surface adsorption. The inherent carbon crystallinity is found to govern the interaction between the carbon host and alkali metals and is a primary factor in the sustainability and performance of the metal composite anodes.
- Xiamen University China (People's Republic of)
- Xiamen University China (People's Republic of)
- Virginia Tech United States
carbon anode, Structural Characteristics, 670, intercalation, alkali metal composite anode, Electrochemistry, lithium/sodium batteries, Energy Storage
carbon anode, Structural Characteristics, 670, intercalation, alkali metal composite anode, Electrochemistry, lithium/sodium batteries, Energy Storage
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
