Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Surface Engineering ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Surface Engineering and Applied Electrochemistry
Article . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gel-chromatographic separation of boron-gluconate electrolyte for obtaining nano-crystalline Co–W coatings: Composition and electrochemical activity of components. Part I. Gel-chromatographic study of electrolyte, separation and composition of components

Authors: A. I. Dikusar; S. S. Belevskii; I. M. Zgardan; S. P. Yushchenko; V. A. Buravets;

Gel-chromatographic separation of boron-gluconate electrolyte for obtaining nano-crystalline Co–W coatings: Composition and electrochemical activity of components. Part I. Gel-chromatographic study of electrolyte, separation and composition of components

Abstract

Studies of boron-gluconate electrolyte for obtaining nanocrystalline Co–W coatings and its separation by molecular weights of the components is carried out by gel filtration. It is shown that boric acid (as a buffer agent) and sodium chloride (as the agent increasing conductivity) after being introduced into the electrolyte form certain gluconate complexes in the solution. The boron-gluconate complex has a larger molecular weight. Three fractions with different molecular weights including the fractions that contain Co-boron-gluconate and W-boron-gluconate complexes were obtained. It is shown that the formation of certain macromolecular complexes is a slow process, the consequence of which is the dependence of the bulk properties of the electrolyte on time.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
bronze