
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Large borehole with multi-lateral branches: A novel solution for exploitation of clayey silt hydrate

doi: 10.31035/cg2018082
ABSTRACT: ontact area are two main ways to raise the productivity of hydrate. An exploitation technique based on large borehole with multi-lateral branches (LB & MB) was proposed in this paper. This technique is mainly intended for the clayey silt hydrate reservoir in the South China Sea, and its main purpose is to alleviate the sand output from formation for maintaining the stability of the reservoir and to greatly increase the gas productivity of the reservoir. In this paper, the following aspects were mainly expounded: definition of the basic geometric parameters for layout of multi-lateral branches in clayey silt hydrate reservoir, simulation of the stimulation effect of a typical well profile with two branches, and prediction and simulation of the reservoir failure risk in a well profile with eight branches. The results show that the LB & MB effectively improves the flow field in the formation, raises the productivity of the reservoir and may also help to decrease the produced water-gas ratio (WGR). When the lateral branches spacing is too small, the failure zones around adjacent lateral branches overlap each other, possibly causing reservoir failure in a larger range. Therefore, the geometric parameters of multi-lateral branches depend on the dual control of the productivity and geotechnical risk factor of reservoir. Further study is being carried out, so as to obtain the optimal combination of parameters of multi-lateral branches.
- Ontario Ministry Of Natural Resources Canada
- China University of Geosciences China (People's Republic of)
- Ontario Ministry Of Natural Resources Canada
- China University of Geosciences China (People's Republic of)
QE1-996.5, Hydrate exploration engineering, Geology, Numerical simulation, Engineering (General). Civil engineering (General), Natural gas hydrate, Clayey silt, Stimulation, TA1-2040, Multi-lateral branches
QE1-996.5, Hydrate exploration engineering, Geology, Numerical simulation, Engineering (General). Civil engineering (General), Natural gas hydrate, Clayey silt, Stimulation, TA1-2040, Multi-lateral branches
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
