Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Inhalation Toxicolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Inhalation Toxicology
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2013
License: CC BY NC
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Inhalation Toxicology
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission

recent health evidence on the role of fractions, chemical constituents and sources of emission
Authors: Cassee, Flemming R.; Heroux, Marie-Eve; Kelly, Frank; Gerlofs-Nijland, Miriam E.;

Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission

Abstract

Particulate matter (PM) is regulated in various parts of the world based on specific size cut offs, often expressed as 10 or 2.5 µm mass median aerodynamic diameter. This pollutant is deemed one of the most dangerous to health and moreover, problems persist with high ambient concentrations. Continuing pressure to re-evaluate ambient air quality standards stems from research that not only has identified effects at low levels of PM but which also has revealed that reductions in certain components, sources and size fractions may best protect public health. Considerable amount of published information have emerged from toxicological research in recent years. Accumulating evidence has identified additional air quality metrics (e.g. black carbon, secondary organic and inorganic aerosols) that may be valuable in evaluating the health risks of, for example, primary combustion particles from traffic emissions, which are not fully taken into account with PM2.5 mass. Most of the evidence accumulated so far is for an adverse effect on health of carbonaceous material from traffic. Traffic-generated dust, including road, brake and tire wear, also contribute to the adverse effects on health. Exposure durations from a few minutes up to a year have been linked with adverse effects. The new evidence collected supports the scientific conclusions of the World Health Organization Air Quality Guidelines and also provides scientific arguments for taking decisive actions to improve air quality and reduce the global burden of disease associated with air pollution.

Countries
Netherlands, United Kingdom
Keywords

Air Pollutants, 610, Dust, Review Article, 333, SDG 3 - Good Health and Well-being, Metals, Animals, Humans, Industry, Particulate Matter, Biomass, Power Plants, Vehicle Emissions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    396
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
396
Top 0.1%
Top 1%
Top 1%
Green
hybrid