
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission

Particulate matter (PM) is regulated in various parts of the world based on specific size cut offs, often expressed as 10 or 2.5 µm mass median aerodynamic diameter. This pollutant is deemed one of the most dangerous to health and moreover, problems persist with high ambient concentrations. Continuing pressure to re-evaluate ambient air quality standards stems from research that not only has identified effects at low levels of PM but which also has revealed that reductions in certain components, sources and size fractions may best protect public health. Considerable amount of published information have emerged from toxicological research in recent years. Accumulating evidence has identified additional air quality metrics (e.g. black carbon, secondary organic and inorganic aerosols) that may be valuable in evaluating the health risks of, for example, primary combustion particles from traffic emissions, which are not fully taken into account with PM2.5 mass. Most of the evidence accumulated so far is for an adverse effect on health of carbonaceous material from traffic. Traffic-generated dust, including road, brake and tire wear, also contribute to the adverse effects on health. Exposure durations from a few minutes up to a year have been linked with adverse effects. The new evidence collected supports the scientific conclusions of the World Health Organization Air Quality Guidelines and also provides scientific arguments for taking decisive actions to improve air quality and reduce the global burden of disease associated with air pollution.
- University of Cambridge United Kingdom
- MRC Centre for Environment and Health United Kingdom
- King's College London, University of London
- University Museum Utrecht Netherlands
- Kings College London United Kingdom
Air Pollutants, 610, Dust, Review Article, 333, SDG 3 - Good Health and Well-being, Metals, Animals, Humans, Industry, Particulate Matter, Biomass, Power Plants, Vehicle Emissions
Air Pollutants, 610, Dust, Review Article, 333, SDG 3 - Good Health and Well-being, Metals, Animals, Humans, Industry, Particulate Matter, Biomass, Power Plants, Vehicle Emissions
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).396 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
