Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.3...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.31219/osf.i...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy and Buildings
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2023
Data sources: UCL Discovery
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The impact of COVID-19 on household energy consumption in England and Wales from April 2020 – March 2022

Authors: Ellen Zapata-Webborn; Eoghan McKenna; Martin Pullinger; Callum Cheshire; Harry Masters; Alex Whittaker; Jessica Few; +2 Authors

The impact of COVID-19 on household energy consumption in England and Wales from April 2020 – March 2022

Abstract

The COVID-19 pandemic changed the way people lived, worked, and studied around the world, with direct consequences for domestic energy use. This study assesses the impact of COVID-19 lockdowns in the first two years of the pandemic on household electricity and gas use in England and Wales. Using data for 508 (electricity) and 326 (gas) homes, elastic net regression, neural network and extreme gradient boosting predictive models were trained and tested on pre-pandemic data. The most accurate model for each household was used to create counterfactuals (predictions in the absence of COVID-19) against which observed pandemic energy use was compared. Median monthly model error (CV(RMSE)) was 3.86% (electricity) and 3.19% (gas) and bias (NMBE) was 0.21% (electricity) and -0.10% (gas). Our analysis showed that on average (electricity; gas) consumption increased by (7.8%; 5.7%) in year 1 of the pandemic and by (2.2%; 0.2%) in year 2. The greatest increases were in the winter lockdown (January – March 2021) by 11.6% and 9.0% for electricity and gas, respectively. At the start of 2022 electricity use remained 2.0% higher while gas use was around 1.9% lower than predicted. Households with children showed the greatest increase in electricity consumption during lockdowns, followed by those with adults in work. Wealthier households increased their electricity consumption by more than the less wealthy and continued to use more than predicted throughout the two-year period while the less wealthy returned to pre-pandemic or lower consumption from summer 2021. Low dwelling efficiency was associated with a greater increase in energy consumption during the pandemic. Additionally, this study shows the value of different machine learning techniques for counterfactual modelling at the individual-dwelling level, and our approach can be used to robustly estimate the impact of other events and interventions.

Country
United Kingdom
Related Organizations
Keywords

Smart meter data, Energy demand, 660, Machine learning, Predictive modelling, Counterfactuals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
hybrid