
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Old-growth forest loss and secondary forest recovery across Amazonian countries

There is growing recognition of the potential of large-scale restoration in the Amazon as a “nature-based solution” to climate change. However, our knowledge of forest loss and recovery beyond Brazil is limited, and carbon emissions and accumulation have not been estimated for the whole biome. Combining a 33-year land cover dataset with estimates of above-ground biomass and carbon sequestration rates, we evaluate forest loss and recovery across nine Amazonian countries and at a local scale. We also estimate the role of secondary forests in offsetting old-growth deforestation emissions and explore the temporal trends in forest loss and recovery. We find secondary forests across the biome to have offset just 9.7% of carbon emissions from old-growth deforestation, despite occupying 27.6% of deforested land. However, these numbers varied between countries ranging from 9.0% in Brazil to 23.8% in Guyana for carbon offsetting, and 24.8% in Brazil to 56.9% in Ecuador for forest area recovery. We reveal a strong, negative spatial relationship between old-growth forest loss and recovery by secondary forests, showing that regions with the greatest potential for large-scale restoration are also those that currently have the lowest recovery (e.g. Brazil dominates deforestation and emissions but has the lowest recovery). Our findings identify three important challenges for policy makers: (1) incentivising large-scale restoration in highly deforested regions, (2) protecting secondary forests without disadvantaging landowners who depend on farm-fallow systems, and (3) preventing further deforestation. Combatting all of these successfully is essential to ensuring that the Amazon biome achieves its potential in mitigating anthropogenic climate change.
- Lancaster University, School of Computing and Communications United Kingdom
- Lancaster University United Kingdom
- University of Leicester United Kingdom
- Bangor University United Kingdom
- University of Oxford Pakistan
tropical forest, restoration, 550, Science, QC1-999, Environmental technology. Sanitary engineering, 333, GE1-350, TD1-1066, 580, Physics, Q, carbon sequestration, Environmental sciences, forest regeneration, climate change, secondary vegetation
tropical forest, restoration, 550, Science, QC1-999, Environmental technology. Sanitary engineering, 333, GE1-350, TD1-1066, 580, Physics, Q, carbon sequestration, Environmental sciences, forest regeneration, climate change, secondary vegetation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
