Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrated Multimodal Transportation Model for a Switchgrass-Based Bioethanol Supply Chain: Case Study in North Dakota

Authors: N. Muhammad Aslaam; Atif Osmani; Yong Shin Park; Joseph G. Szmerekovsky;

Integrated Multimodal Transportation Model for a Switchgrass-Based Bioethanol Supply Chain: Case Study in North Dakota

Abstract

In this study, a mixed integer linear programming model that integrates multimodal transport—truck and rail—into the switchgrass-based bioethanol supply chain was formulated. The objective of this study was to minimize the total cost for cultivation and harvesting, infrastructure, the storage process, bioethanol production, and transportation. Strategic decisions, including the number and location of intermodal facilities and biorefineries, and tactical decisions, such as the amount of biomass shipped, processed, and converted into bioethanol, were validated by using North Dakota as a case study. It was found that the multimodal transport scenario was more cost effective than a single mode of transport (truck) and resulted in a lower cost for bioethanol. A sensitivity analysis was conducted to demonstrate the impact of key factors in the decision to use multimodal transport in a switchgrass-based bioethanol supply chain and on the cost of bioethanol.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%