Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Vietnam Journal of Agricultural Sciences
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Vietnam Journal of Agricultural Sciences
Article
License: CC BY
Data sources: UnpayWall
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Greenhouse Gas Emissions from Piggery and Biogas Digesters in the North of Vietnam

Authors: Sabine Douxchamps; Ashly Arevalo; Kien Tri Nguyen; Nghia Dai Tran; Jacobo Arango; Duong Cong Hoan; Pham Van Dung;

Greenhouse Gas Emissions from Piggery and Biogas Digesters in the North of Vietnam

Abstract

Increases in pig farm densities have caused great pressures on waste management systems and produce massive manure and urine quantities in Vietnam. This study aimed to identify the role and contributions of biogas digesters to better manage the sources of greenhouse gas (GHG) emissions from pig wastes for different types of pig farms in the north of Vietnam. Four provinces, namely Thanh Hoa, Phu Tho, Thai Binh, Vinh Phuc, were identified. A total of 24 farms were purposively selected including 16 small-size farms and 8 larger-size farms. The findings showed that GHG emissions from small-size farms (154.8 t CO2-eq.yr-1) did not significantly differ from the amounts measured in larger-size farms (139.1 t CO2-eq.yr-1) in the four surveyed provinces. The sampling position did not significantly affect the GHG emission rates, with 173.9 t CO2-eq.yr-1 inside piggeries and 120.8 t CO2-eq.yr-1 outside the outlet of the biogas digesters (p-value=0.09). N2O emissions require further measurements at different farm sizes and sites. These results confirmed that the pig waste management of biogas digesters for both small-size and larger-size pig farms is not completely efficient and that efforts need to be invested in to mitigate GHG emissions in pig production. Reducing pig density per piggery is highly recommended. The application of other alternative aerobic or anaerobic digestion technologies like vermicompost, effective microorganisms, and composting should also be encouraged and promoted.

Country
France
Related Organizations
Keywords

piggeries, pocilga, emisiones de gas, biogas, gas emissions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid