Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Agrologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agrology
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agrology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agrology
Article . 2019
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phytoremediation aspects of energy crops use in Ukraine

Фіторемедіаційні аспекти використання енергетичних культур в умовах України
Authors: M. I. Kulyk; M. A. Galytska; M. S. Samoylik; I. I. Zhornyk;

Phytoremediation aspects of energy crops use in Ukraine

Abstract

Today clearing of contaminated soils from heavy metals, pesticide residues is very important problem for Ukraine. Soil pollution is considered to be the result of the functioning of metallurgical and chemical industrial enterprises, as well as the irrational application of chemical plant protection means in the agricultural sector. The range of such preparations as well as the areas of contaminated soils are increasing every year. Phytoremediation with the help of herbaceous plants is one of the most effective methods of decontamination. This list of plants should be supplemented by perennial energy crops, taking into account the absorbing powers of their root system. The basis for preparing the material was the multiple scientific literary sources of domestic and foreign scientists on an investigated theme, the working-out of relevant techniques and scientific and practical recommendations. We applied both general scientific methods (dialectics, analysis and synthesis) and special ones for conducting of analytical review of literature. The largest area of soil in Ukraine is contaminated with cobalt, molybdenum, and copper, whose content exceeds not only the background values but also the maximum permissible concentrations (MPC). It has been defined that the intensity of heavy metals transition in the system “soil-plant” of the energy crops has the following form Cd→Cu→Zn→Pb. Perennial energy crops are capable to create quickly an above ground phytomass and to form an aggressive root system that enables them to accumulate heavy metals from the soil. They can be new and important plants for phytoremediation. At the same time, the energy crops are allocated in accordance with agroclimatic zoning taking into account plant responses to the growing conditions and also applying the scheme of soil remediation from heavy metals. It has been established that energy crops (Switchgrass and Silvergrass) are Hyperaccumulators. They actively absorb heavy metals and partialy accumulate them in their underground and above ground parts. Silvergrass (Miscanthus giganteus) provides higher yield than switchgrass (Panicum virgatum), though switchgrass has less dry matter content, higher accumulation of heavy metals in plant phytomass but the maximum permissible concentration is lower than regulated standards. Silvergrass (Miscanthus giganteus) provides higher yield than switchgrass (Panicum virgatum), though switchgrass has less dry matter content, higher accumulation of heavy metals in plant phytomass and maximum permissible concentration is lower than regulated standards. On termination of the vegetation, the above-ground vegetative mass of these plants can undergo to proper processing that is an additional source of non-ferrous metals or biofuel production for energy purposes.

Keywords

S, Agriculture, phytoremediation, phytomass, biofuel, ecology, energy crops, heavy metals, soil clearing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
gold