Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Climate Research
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Climate Research
Article . 2011 . Peer-reviewed
Data sources: Crossref
Digital.CSIC
Article . 2011 . Peer-reviewed
Data sources: Digital.CSIC
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Climate change impacts on coastal and pelagic environments in the southeastern Bay of Biscay

Authors: Chust, Guillem; Borja, Angel; Caballero, Ainhoa; Irigoien, Xabier; Jon, Sáenz; Roberto, Moncho; Marta, Marcos; +4 Authors

Climate change impacts on coastal and pelagic environments in the southeastern Bay of Biscay

Abstract

27 páginas, 13 figuras, 3 tablas. Artículo Open Access. The impacts of global climate change on the Basque coast and the pelagic systems within the southeastern Bay of Biscay are reviewed. Climate projections under greenhouse gas emission scenarios indicate that this area will experience changes in climate throughout the 21st century, including warming of surface air (especially heat wave episodes), intensification of extreme daily rainfall (10%), warming of the upper 100 m of the ocean layer (1.5 to 2.05°C), and sea level rise (SLR; 29 to 49 cm). Observations made in the bay throughout the 20th century for air temperature and mean sea level are in agreement with these projections. Trends in ocean-climatic historical observations within the area, including sea temperature, precipitation, upwelling/downwelling, turbulence and wave climate, are also reviewed. The main impacts on the coast are expected to be from SLR, especially in low-lying areas (mostly urbanised) within estuaries. Sandy beaches are also expected to undergo significant mean shoreline retreats of between 25 and 40% of their width. As the sea level rises, the natural migration of saltmarshes and intertidal seagrasses landward will be constrained, in most cases, by existing anthropogenic fixed boundaries. Empirical relationships between the distribution and dynamics of the long-term biological measures (plankton, primary production, benthos, and fisheries) on the one hand, and ocean-climatic variability on the other, indicate that pelagic and coastal water ecosystems will be affected by ocean warming, increased stratification, shifts in anomaly patterns and streamflow regimes. The largest uncertainties are associated with the lack of down-scaled projections within the bay on ocean circulation, ocean-meteorological indices, wave climate and ocean acidification. Este estudio ha sido financiado por el Departamento de Medio Ambiente, Planificación Territorial, Agricultura y Pesca del Gobierno Vasco (Proyectos K-Egokitzen y EKLIMA21 , del Programa Etortek); así como por el Ministerio de Medio Ambiente y Medio Rural y Marino del Gobierno de España (Proyecto Ref.: 0.39/ SGTB/ 2007/4.1), y el Ministerio de Ciencia e Innovación(Proyecto Ref.: CGL2008-03321). Peer reviewed

Countries
France, Spain
Keywords

Temperatures, Saltmarsh, Basque Country, Precipitation, Review, Bay of Biscay, [ SDV.EE.BIO ] Life Sciences [q-bio]/Ecology, environment/Bioclimatology, Climate change, Sea level, [SDV.EE.BIO]Life Sciences [q-bio]/Ecology, environment/Bioclimatology, Coast

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 47
    download downloads 102
  • 47
    views
    102
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC47102
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
40
Top 10%
Top 10%
Top 10%
47
102
Green
bronze