Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Earth S...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Earth Science
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Earth Science
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Climate-Controlled Coastal Deposition of the Early Permian Liangshan Formation in Western South China

Authors: Ao Liu; Jianghai Yang; Jianghai Yang; Liang Cheng; Juntong Ren;

Climate-Controlled Coastal Deposition of the Early Permian Liangshan Formation in Western South China

Abstract

During the late Paleozoic ice age, tropical coastal depositions have been widely linked to high-frequency sea-level variations, but their linkage with the associated climate change was not fully understood. In the early Permian, two deglaciations occurred in the late Sakmarian and late Artinskian, respectively. During the late Artinskian deglacial warming and transgression, coal-bearing siliciclastic successions of the Liangshan Formation were developed in South China. Three facies associations were recognized from the Liangshan Formation successions in western South China and ascribed to coastal alluvial plain, estuarine, and deltaic environments. Detailed analysis of sedimentology, paleosol morphology, and sandstone petrology suggest a relatively dry-to-wet climate shift and estuarine to deltaic facies transition in the lower Liangshan Formation. This climate shift and facies transition can be temporally correlated based on regional stratigraphic correlations, although precise age constraints are needed to test this correlation. The estuarine interval of the lowest Liangshan Formation signified a rapid transgression during the late Artinskian deglaciation and likely formed during a relatively arid climate with locally small fluvial systems, which provided limited sediment supply. The subsequent transition to and initiation of deltaic deposition was broadly associated with the inferred climate shift and could be primarily resulted from a climate wetting-induced great increase in sediment supply, irrespective of the deglacial sea-level rise.

Keywords

coastal deposition, Science, Q, Liangshan Formation, climate change, early Permian, western South China

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Top 10%
Average
Average
gold