Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Earth S...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Earth Science
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Earth Science
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantifying spatiotemporal dynamics of urban building and material metabolism by combining a random forest model and GIS-based material flow analysis

Authors: Ting Mao; Ting Mao; Ting Mao; Yupeng Liu; Yupeng Liu; Yupeng Liu; Wei-Qiang Chen; +7 Authors

Quantifying spatiotemporal dynamics of urban building and material metabolism by combining a random forest model and GIS-based material flow analysis

Abstract

Understanding building metabolism is critical for guiding urban resource management and addressing challenges in urban sustainable development. Key attributes of buildings, including geolocation, footprint, height, and vintage, are crucial to characterizing spatiotemporal patterns of building metabolism. However, these attributes are usually challenging to obtain broadly and automatically, which obscures a comprehensive understanding and accurate assessment of urban metabolism. Moreover, the lack of a finer spatial pattern of these attributes shadows a spatially explicit characterization of material stock and flow in cities. In this study, we took Shenzhen—whose urbanization over the past three decades has been unprecedented in China and even around the world— has been taken as an example to develop a city-level building dataset based on a random-forest model and quantify the spatiotemporal patterns of material metabolism at relatively high spatial resolution (in 500 m × 500 m grids) by combing material flow analysis (MFA) with geographic information system (GIS). The results show that Shenzhen grew from a small town with 281.02 × 106 m3 of buildings in the 1990s to a mega-city with 3585.5 × 106 m3 of buildings in 2018 and expanded both outward and upward from downtown to suburban areas. The urban “weight” (material stock) increased from 92.69 Mt in the 1990s to 1667.8 Mt in 2018 and tended to be saturated, with an average growth rate of 9.5% per year. Spatially, the south-central areas were the largest container of material stocks and generated the most demolition waste. The spatially explicit maps of building three-dimensional (3-D) form and vintage provide detailed information for architectural conservation and could support the decision-making for urban renewal planning. The spatiotemporal patterns of in-use material stocks and potential generation of construction and demolition waste (CDW) provide a benchmark of environmental risk assessment and potential secondary resources to reduce “original” material consumption, which could help alter urban renewal to an environmental-friendly and sustainable trajectory.

Related Organizations
Keywords

geographic information systems, Science, Q, industrial ecology, building vintage, material flow analysis, spatiotemporal analysis, random forest

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold