
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Mini-Review on Hydrogen-Rich Syngas Production by Thermo-Catalytic and Bioconversion of Biomass and Its Environmental Implications

La conversion thermo-catalytique et biochimique de la biomasse en gaz de synthèse riche en hydrogène a été largement rapportée avec moins d'accent sur les implications environnementales des processus. Cette mini-revue présente un aperçu des différentes voies thermo-catalytiques de conversion de la biomasse en gaz de synthèse riche en hydrogène ainsi que leur impact environnemental étudié à l'aide de la méthodologie d'évaluation du cycle de vie. La revue a révélé que la plupart des auteurs utilisaient des procédés de gazéification de la biomasse, de pyrolyse de la biomasse, de reformage et de fermentation pour la production de gaz de synthèse riche en hydrogène. Le potentiel de réchauffement climatique a été observé comme l'impact environnemental le plus important signalé dans les articles examinés. On a constaté que les émissions d'équivalent CO2 varient selon chacun des processus et le type de charge d'alimentation utilisé. Les tendances de la littérature montrent que les processus thermo-catalytiques et biochimiques présentent des avantages concurrentiels et un potentiel de concurrence favorable par rapport à la technologie existante utilisée pour la production d'hydrogène. Néanmoins, il n'est pas possible de déterminer si ces technologies doivent être exclues des charges environnementales. Ce mini-examen pourrait être un guide rapide pour l'intérêt futur de la recherche sur l'impact environnemental de la production de gaz de synthèse riche en hydrogène par conversion thermo-catalytique et biochimique de la biomasse.
Se ha informado ampliamente sobre la conversión termocatalítica y bioquímica de biomasa en gas de síntesis rico en hidrógeno con menos énfasis en las implicaciones ambientales de los procesos. Esta mini revisión presenta una descripción general de las diferentes rutas termocatalíticas de conversión de biomasa en gas de síntesis rico en hidrógeno, así como su impacto ambiental investigado utilizando la metodología de evaluación del ciclo de vida. La revisión reveló que la mayoría de los autores emplearon procesos de gasificación de biomasa, pirólisis de biomasa, reformado y fermentación para la producción de gas de síntesis rico en hidrógeno. El potencial de calentamiento global se observó como el impacto ambiental más significativo informado en los artículos revisados. Se encontró que las emisiones equivalentes de CO2 varían con cada uno de los procesos y el tipo de materia prima utilizada. Las tendencias de la literatura muestran que tanto los procesos termocatalíticos como los bioquímicos tienen ventajas competitivas y potencial para competir favorablemente con la tecnología existente utilizada para la producción de hidrógeno. Sin embargo, no se puede determinar que estas tecnologías deban excluirse de las cargas ambientales. Esta mini revisión podría ser una guía rápida para futuros intereses de investigación sobre el impacto ambiental de la producción de gas de síntesis rico en hidrógeno mediante la conversión termocatalítica y bioquímica de biomasa.
The thermo-catalytic and biochemical conversion of biomass to hydrogen-rich syngas has been widely reported with less emphasis on the environmental implications of the processes. This mini-review presents an overview of different thermo-catalytic route of converting biomass to hydrogen-rich syngas as well as their environmental impact investigated using life cycle assessment methodology. The review revealed that most of the authors employed, biomass gasification, biomass pyrolysis, reforming and fermentative processes for the hydrogen-rich syngas production. Global warming potential was observed as the most significant environmental impact reported in the reviewed articles. The CO2 equivalent emissions were found to varies with each of the processes and the type of feedstock used. Trends from literature show that both thermo-catalytic and biochemical processes have competitive advantages and potential to compete favorable with the existing technology used for hydrogen production. Nevertheless, it cannot be ascertained that these technologies should be excluded from environmental burdens. This mini-review could be a quick guide to future research interest in environmental impact of hydrogen-rich syngas production by thermo-catalytic and biochemical conversion of biomass.
تم الإبلاغ على نطاق واسع عن التحويل الحفزي الحراري والكيميائي الحيوي للكتلة الحيوية إلى غاز تخليق غني بالهيدروجين مع تركيز أقل على الآثار البيئية للعمليات. تقدم هذه المراجعة المصغرة نظرة عامة على المسار الحفاز الحراري المختلف لتحويل الكتلة الحيوية إلى غاز تخليق غني بالهيدروجين بالإضافة إلى تأثيرها البيئي الذي تم التحقيق فيه باستخدام منهجية تقييم دورة الحياة. كشفت المراجعة أن معظم المؤلفين استخدموا، تغويز الكتلة الحيوية، الانحلال الحراري للكتلة الحيوية، عمليات الإصلاح والتخمير لإنتاج غاز التخليق الغني بالهيدروجين. لوحظ أن إمكانات الاحترار العالمي هي أهم تأثير بيئي تم الإبلاغ عنه في المقالات التي تمت مراجعتها. وتبين أن انبعاثات مكافئ ثاني أكسيد الكربون تختلف باختلاف كل عملية ونوع المادة الوسيطة المستخدمة. تظهر الاتجاهات من الأدبيات أن كل من العمليات الحفازة الحرارية والكيميائية الحيوية لها مزايا تنافسية وقدرة على التنافس بشكل مواتٍ مع التكنولوجيا الحالية المستخدمة لإنتاج الهيدروجين. ومع ذلك، لا يمكن التأكد من أنه ينبغي استبعاد هذه التقنيات من الأعباء البيئية. يمكن أن تكون هذه المراجعة المصغرة دليلاً سريعًا للاهتمام البحثي المستقبلي بالتأثير البيئي لإنتاج غاز التخليق الغني بالهيدروجين عن طريق التحويل الحفاز الحراري والكيميائي الحيوي للكتلة الحيوية.
- Universiti Tenaga Nasional Malaysia
- Universiti Tenaga Nasional Malaysia
Biomass (ecology), Bioconversion, Pulp and paper industry, Biomedical Engineering, Organic chemistry, Hydrothermal Carbonization, FOS: Medical engineering, General Works, Catalytic Carbon Dioxide Hydrogenation, Catalysis, Environmental science, Engineering, life cycle assessment, A, biochemical conversion, Waste management, Biology, FOS: Chemical engineering, biomass, Ecology, Thermochemical Conversion, Biomass Pyrolysis and Conversion Technologies, Chemical Engineering, Syngas, hydrogen-rich syngas, Raw material, thermo-catalytic conversion, Biochemical engineering, Chemistry, Catalytic Conversion of Biomass to Fuels and Chemicals, FOS: Biological sciences, Physical Sciences, Fermentation, Hydrogen production, Hydrogenation, Hydrogenolysis, Hydrogen
Biomass (ecology), Bioconversion, Pulp and paper industry, Biomedical Engineering, Organic chemistry, Hydrothermal Carbonization, FOS: Medical engineering, General Works, Catalytic Carbon Dioxide Hydrogenation, Catalysis, Environmental science, Engineering, life cycle assessment, A, biochemical conversion, Waste management, Biology, FOS: Chemical engineering, biomass, Ecology, Thermochemical Conversion, Biomass Pyrolysis and Conversion Technologies, Chemical Engineering, Syngas, hydrogen-rich syngas, Raw material, thermo-catalytic conversion, Biochemical engineering, Chemistry, Catalytic Conversion of Biomass to Fuels and Chemicals, FOS: Biological sciences, Physical Sciences, Fermentation, Hydrogen production, Hydrogenation, Hydrogenolysis, Hydrogen
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
