Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ OSF Preprintsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Energy Research
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Energy Research
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.31219/osf.i...
Article . 2022 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Negative emissions at negative cost-an opportunity for a scalable niche

Authors: P. V. Aravind; P. V. Aravind; P. V. Aravind; Vipin Champatan; Girigan Gopi; Vandit Vijay; Vandit Vijay; +13 Authors

Negative emissions at negative cost-an opportunity for a scalable niche

Abstract

In the face of the rapidly dwindling carbon budgets, negative emission technologies are widely suggested as required to stabilize the Earth’s climate. However, finding cost-effective, socially acceptable, and politically achievable means to enable such technologies remains a challenge. We propose solutions based on negative emission technologies to facilitate wealth creation for the stakeholders while helping to mitigate climate change. This paper comes up with suggestions and guidelines on significantly increasing carbon sequestration in coffee farms. A coffee and jackfruit agroforestry-based case study is presented along with an array of technical interventions, having a special focus on bioenergy and biochar, potentially leading to “negative emissions at negative cost.” The strategies for integrating food production with soil and water management, fuel production, adoption of renewable energy systems and timber management are outlined. The emphasis is on combining biological and engineering sciences to devise a practically viable niche that is easy to adopt, adapt and scale up for the communities and regions to achieve net negative emissions. The concerns expressed in the recent literature on the implementation of emission reduction and negative emission technologies are briefly presented. The novel opportunities to alleviate these concerns arising from our proposed interventions are then pointed out. Our analysis indicates that 1 ha coffee jackfruit-based agroforestry can additionally sequester around 10 tonnes of CO2-eq and lead to an income enhancement of up to 3,000–4,000 Euros in comparison to unshaded coffee. Finally, the global outlook for an easily adoptable nature-based approach is presented, suggesting an opportunity to implement revenue-generating negative emission technologies on a gigatonne scale. We anticipate that our approach presented in the paper results in increased attention to the development of practically viable science and technology-based interventions in order to support the speeding up of climate change mitigation efforts.

Country
Netherlands
Keywords

690, bioenergy, General Works, negative emission technologies, sustainable agriculture, Engineering, carbon sequeatration, A, biochar, climate–change, agroforesry systems

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 11
    download downloads 7
  • 11
    views
    7
    downloads
    Data sourceViewsDownloads
    TU Delft Repository117
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
3
Top 10%
Average
Average
11
7
gold