Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Environ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Environmental Science
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

National assessment of extreme sea-level driven inundation under rising sea levels

Authors: Ryan Paulik; Alec Wild; Scott Stephens; Rebecca Welsh; Sanjay Wadhwa;

National assessment of extreme sea-level driven inundation under rising sea levels

Abstract

Episodic inundation from extreme sea-levels (ESLs) will have increasing social and economic impacts in response to relative sea level rise (RSLR). Despite the improved global understanding of ESL frequencies and magnitudes, detailed nationwide inundation maps are unavailable for many countries. This study quantifies New Zealand’s land area exposure to inundation from ESLs and RSLR by: (i) calculating ESL heights for nine annual recurrence intervals (ARI) between 2 and 1,000-years, (ii) converted into space-varying water surface grids, (iii) developing a composite topographical dataset comprised of Airborne Light Detection and Ranging (LIDAR) and bias corrected Shuttle Radar Topography Mission (SRTM), (iv) modifying topographical data to represent mitigation structures, and (v) executing a scalable static model to map land inundation areas for 0.1 m RSLR increments. This modular approach supports continuous integration of new models and data at resolutions appropriate for quantifying inundation hazard and risk trends. In response to 0.1 m–0.4 m RSLR expected in the New Zealand region from 2040 to 2070 under SSP5-8.5 global mean sea level rise scenarios, a rapid cumulative inundation area increase is observed for 10 and 100-year ESL ARIs at national and regional levels. The RSLR time independent maps developed here supports future investigations of ESL inundation hazards and risks for any prescribed RSLR heights or timeframes.

Keywords

Environmental sciences, climate change, exposure, sea level rise, coastal flooding, GE1-350, extreme sea-levels

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold