Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Environ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Environmental Science
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/mn...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/sm...
Other literature type . 2022
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nutrient Management Drives the Direction and Magnitude of Nitrous Oxide Flux in Crop Residue-Returned Soil Under Different Soil Moisture

تقود إدارة المغذيات اتجاه وحجم تدفق أكسيد النيتروز في التربة العائدة من مخلفات المحاصيل تحت رطوبة التربة المختلفة
Authors: Sangeeta Lenka; Rajesh Choudhary; Narendra Kumar Lenka; Jayant Kumar Saha; Dolamani Amat; A. K. Patra; Vijay Gami; +1 Authors

Nutrient Management Drives the Direction and Magnitude of Nitrous Oxide Flux in Crop Residue-Returned Soil Under Different Soil Moisture

Abstract

Crop residues as key organic carbon inputs have the potential for soil carbon sequestration. However, previous studies have shown an inconsistent effect of residue return on the direction and magnitude of soil nitrous oxide (N2O) emission. We used a laboratory-based soil incubation study to test the response of N2O emission to crop residue type, soil moisture, and how nutrient management modulates these responses. In this study, we incorporated crop residues with different qualities (wheat, rice, soybean, and maize) at two soil moisture contents {80% field capacity (FC) and 60% FC} and under seven nutrient levels: N0P0K0 (no nutrients), N0PK, N100PK, N150PK, N100PK + manure@ 5 Mg ha−1, N100PK + biochar@ 5 Mg ha−1, and N150PK + biochar@ 5 Mg ha−1. The results demonstrated significant (p < 0.01) differences in the magnitude of N2O emissions among treatments. However, only the interaction effect of residue × nutrient and nutrient × moisture was significant (p < 0.05). N100PK and N150PK at 80% FC mitigated N2O emission by approximately 20% in wheat residue-amended soil (cf. control soil without residue). In contrast, maize residue amendment (cf. control soil) increased N2O emission by 130% under N0P0K0 and 80% FC. Residue effects were negatively correlated with the C:N ratio, and a strong positive correlation (p < 0.01) was obtained between N2O emission and CO2 respiration, labile carbon, mineral N, and residue total nitrogen (TN). When no nutrients were added, N2O emission was higher in residue returned soil. However, cumulative fluxes of N2O decreased by 6–17% when maize and wheat residues (cf. control soil) were applied with nutrients. Negative fluxes of N2O indicating consumption were observed in every treatment after 57 days of incubation and were most pronounced in control soil without residue and nutrients. Decreasing the soil moisture from 80% FC to 60% FC, the N2O consumption rate increased by 6.6 times across residue types and nutrient management. The regression analysis and structural equation modeling (SEM) results showed that residue TN, soil CO2 emission, NO3-N, and labile SOC were the key predictor variables and could explain 82% variability in the soil N2O emission in the Vertisols of Central India. The results suggested that nutrient addition (NPK) could alter the magnitude and direction of soil N2O flux by residue type and soil moisture by influencing the underlying soil microbial processes of the C and N cycle in the Vertisol of subtropical India.

Keywords

FOS: Political science, Organic chemistry, soil respiration, Biochemistry, Agricultural and Biological Sciences, Engineering, Soil water, Crop residue, GE1-350, Political science, Water content, Nitrous oxide, Ecology, Nutrient Cycling, Soil Water Retention, Life Sciences, Agriculture, Soil respiration, Residue (chemistry), Soil carbon, Chemistry, climate change, greenhouse gas, Physical Sciences, Pyrolysis, Biogeochemical Cycling of Nutrients in Aquatic Ecosystems, Mechanics and Transport in Unsaturated Soils, Nitrogen, Soil Science, FOS: Law, Environmental science, C:N ratio, Environmental Chemistry, Biology, Moisture, Civil and Structural Engineering, Soil science, Soil Fertility, Agronomy, Environmental sciences, Biochar, Geotechnical engineering, FOS: Biological sciences, Environmental Science, Amendment, residue quality, Soil Carbon Dynamics and Nutrient Cycling in Ecosystems, Nutrient Limitation, CO2 flux, Law, Animal science, Nutrient

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
gold