Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Environ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Environmental Science
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Antagonistic and synergistic interactions dominate GHGs fluxes, soil properties and yield responses to biochar and N addition

Authors: Xiaoyu Jia; Weiming Yan; Weiming Yan; Hongze Ma; Zhouping Shangguan;

Antagonistic and synergistic interactions dominate GHGs fluxes, soil properties and yield responses to biochar and N addition

Abstract

Applying biochar to soil has been advocated as an effective measure to improve soil fertility and increase carbon (C) sequestration. Biochar is often co-applied with nitrogen (N) fertilizers in agricultural ecosystems, however, the interactive effects of biochar and N addition (BN) on soil greenhouse gases (GHGs) fluxes, soil C and N fractions, and yield has not been investigated. Here, we manipulated a global meta-analysis to explore the effects of biochar and N addition and their interaction on the GHGs, soil C and N fractions, and yield by assembling 75 articles. Results indicate that across all studies, biochar, N, and BN additions all increased soil CO2 emissions (8.5%–29.6%), yield (4.2%–58.2%), soil organic C (SOC, 1.8%–50.4%), dissolved organic C (DOC, 2.7%–30.0%), and total N (TN, 6.8%–15.6%), but had no significant effect on CH4 fluxes. Biochar addition reduced N2O emissions (−21.3%), global warming potential (GWP, −19.8%), greenhouse gas intensity (GHGI, −28.2%), NH4+ (−17.8%) and NO3− (−10.7%), whereas N addition increased these indexes. The interaction effects of BN on CO2 and N2O emissions, GWP, TN, and NH4+ contents were antagonistic, while CH4 emissions, DOC, MBC, NO3−, and yield exhibited synergistic responses. Notably, soil GHGs responses varied depending on geo-climatic factors, edaphic properties, biochar and N treatment parameters, and experimental scenarios. These findings indicate that the co-addition of biochar and N has the potential to mitigate climate change and improve yield, providing a valuable reference for the improvement of climate-smart agriculture.

Related Organizations
Keywords

Environmental sciences, greenhouse gas emissions, C and N cycle, biochar, GE1-350, crop yield, interactive effect, nitrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold
Related to Research communities
Energy Research