
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Geographical, Climatological, and Biological Characteristics of Tree Radial Growth Response to Autumn Climate Change

Terrestrial forest ecosystems are crucial to the global carbon cycle and climate system; however, these ecosystems have experienced significant warming rates in recent decades, whose impact remains uncertain. This study investigated radial tree growth using the tree-ring width index (RWI) for forest ecosystems throughout the Northern Hemisphere to determine tree growth responses to autumn climate change, a season which remains considerably understudied compared to spring and summer, using response function and random forest machine learning methods. Results showed that autumn climate conditions significantly impact the RWI throughout the Northern Hemisphere. Spatial variations in the RWI response were influenced by geography (latitude, longitude, and elevation), climatology, and biology (tree genera); however, geographical and/or climatological characteristics explained more of the response compared to biological characteristics. Higher autumn temperatures tended to negatively impact tree radial growth south of 40° N in regions of western Asia, southern Europe, United State of America and Mexico, which was similar to the summer temperature response found in previous studies, which was attributed to temperature-induced water stress.
- Arctic Research Centre Sweden
- Hokkaido Bunkyo University Japan
- Hokkaido Bunkyo University Japan
- Nagoya University Japan
- Nagoya University Japan
tree-ring width index, Forestry, forest ecosystem, SD1-669.5, temperature-induced water stress, Environmental sciences, climate change, random forest algorithm, GE1-350, Northern Hemisphere
tree-ring width index, Forestry, forest ecosystem, SD1-669.5, temperature-induced water stress, Environmental sciences, climate change, random forest algorithm, GE1-350, Northern Hemisphere
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
