
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Cost of Reducing the North Atlantic Ocean Biological Carbon Pump

To predict the impacts of climate change it is essential to understand how anthropogenic change alters the balance between atmosphere, ocean, and terrestrial reservoirs of carbon. It has been estimated that natural atmospheric concentrations of CO2 are almost 200 ppm lower than they would be without the transport of organic material produced in the surface ocean to depth, an ecosystem service driven by mechanisms collectively referred to as the biological carbon pump. Here we quantify potential reductions in carbon sequestration fluxes in the North Atlantic Ocean through the biological carbon pump over the twenty-first century, using two independent biogeochemical models, driven by low and high IPCC AR5 carbon emission scenarios. The carbon flux at 1000 m (the depth at which it is assumed that carbon is sequestered) in the North Atlantic was estimated to decline between 27 and 43% by the end of the century, depending on the biogeochemical model and the emission scenario considered. In monetary terms, the value of this loss in carbon sequestration service in the North Atlantic was estimated to range between US$170–US$3000 billion in abatement (mitigation) costs and US$23–US$401 billion in social (adaptation) costs, over the twenty-first century. Our results challenge the frequent assumption that coastal habitats store more significant amounts of carbon and are under greater threat. We highlight the largely unrecognized economic importance of the natural, blue carbon sequestration service provided by the open ocean, which is predicted to undergo significant anthropogenic-driven change.
- National Oceanography Centre United Kingdom
- Marine Biological Association of the United Kingdom United Kingdom
- Plymouth Marine Laboratory United Kingdom
- University of Southampton United Kingdom
- Natural Environment Research Council United Kingdom
550, North Atlantic, 551, carbon sequestration, climate change, ocean biochemistry, economic valuation
550, North Atlantic, 551, carbon sequestration, climate change, ocean biochemistry, economic valuation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
