Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Marine ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Marine Science
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Marine Science
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distribution and Production of N2O in the Subtropical Western North Pacific Ocean During the Spring of 2020

Authors: Jang-Mu Heo; Hyo-Ryeon Kim; Sang-Min Eom; Joo-Eun Yoon; JeongHee Shim; Jae-Hyun Lim; Ju-Hyoung Kim; +4 Authors

Distribution and Production of N2O in the Subtropical Western North Pacific Ocean During the Spring of 2020

Abstract

Nitrous oxide (N2O) is an important greenhouse gas emitted in significant volumes by the Pacific Ocean. However, the relationship between N2O dynamics and environmental drivers in the subtropical western North Pacific Ocean (STWNPO) remains poorly understood. We investigated the distribution of N2O and its production as well as the related mechanisms at the surface (0–200 m), intermediate (200–1500 m), and deep (1500–5774 m) layers of the STWNPO, which were divided according to the distribution of water masses. We applied the transit time distribution (TTD) method to determine the ventilation times, and to estimate the N2O equilibrium concentration of water parcels last in contact with the atmosphere prior to being ventilated. In the surface layer, biologically derived N2O (ΔN2O) was positively correlated with the apparent oxygen utilization (AOU) (R2 = 0.48), suggesting that surface N2O may be produced by nitrification. In the intermediate layer, ΔN2O was positively correlated with AOU and NO3− (R2 = 0.92 and R2 = 0.91, respectively) and negatively correlated with nitrogen sinks (N*) (R2 = 0.60). Hence, the highest ΔN2O value in the oxygen minimum layer suggested N2O production through nitrification and potential denitrification (up to 51% and 25% of measured N2O, respectively). In contrast, the deep layer exhibited a positive correlation between ΔN2O and AOU (R2 = 0.92), suggesting that the N2O accumulation in this layer may be caused by nitrification. Our results demonstrate that the STWNPO serves as an apparent source of atmospheric N2O (mean air−sea flux 2.0 ± 0.3 μmol m-2 d-1), and that nitrification and potential denitrification may be the primary mechanisms of N2O production in the STWNPO. We predict that ongoing ocean warming, deoxygenation, acidification, and anthropogenic nitrogen deposition in the STWNPO may elevate N2O emissions in the future. Therefore, the results obtained here are important for elucidating the relationships between N2O dynamics and environmental changes in the STWNPO and the global ocean.

Keywords

North Pacific Ocean, nitrous oxide, Science, Q, General. Including nature conservation, geographical distribution, QH1-199.5, air-sea gas exchange, oxygen minimum layer, climate change, greenhouse gas

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold