Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aerospacearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aerospace
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aerospace
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aerospace
Article . 2020
Data sources: DOAJ
https://dx.doi.org/10.60692/5j...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/h3...
Other literature type . 2020
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Constructive Aerodynamic Interference in a Network of Weakly Coupled Flutter-Based Energy Harvesters

التداخل الديناميكي الهوائي البناء في شبكة من حصادات الطاقة القائمة على الرفرفة المقترنة بشكل ضعيف
Authors: Emmanuel Beltramo; Martín Eduardo Pérez Segura; Bruno A. Roccia; Marcelo Federico Valdez; Marcos L. Verstraete; Sergio Preidikman;

Constructive Aerodynamic Interference in a Network of Weakly Coupled Flutter-Based Energy Harvesters

Abstract

Converting flow-induced vibrations into electricity for low-power generation has received growing attention over the past few years. Aeroelastic phenomena, good candidates to yield high energy performance in renewable wind energy harvesting (EH) systems, can play a pivotal role in providing sufficient power for extended operation with little or no battery replacement. In this paper, a numerical model and a co-simulation approach have been developed to study a new EH device for power generation. We investigate the problem focusing on a weakly aerodynamically coupled flutter-based EH system. It consists of two flexible wings anchored by cantilevered beams with attached piezoelectric layers, undergoing nonlinear coupled bending–torsion limit cycle oscillations. Besides the development of individual EH devices, further issues are posed when considering multiple objects for realizing a network of devices and magnifying the extracted power due to nonlinear synergies and constructive interferences. This work investigates the effect of various external conditions and physical parameters on the performance of the piezoaeroelastic array of devices. From the viewpoint of applications, we are most concerned about whether an EH can generate sufficient power under a variable excitation. The results of this study can be used for the design and integration of low-energy wind generation technologies into buildings, bridges, and built-in sensor networks in aircraft structures.

Keywords

energy harvesting, Artificial intelligence, unsteady aerodynamics, Morphing Aircraft Technology, Nonlinear Energy Harvesting, Computational Mechanics, FOS: Mechanical engineering, Aerospace Engineering, Control (management), Vibration Energy Harvesting for Microsystems Applications, Vibration, Quantum mechanics, Broadband Vibration Energy Harvesting, Aerodynamics, Engineering, Control theory (sociology), Aeroelasticity, postcritical behavior, Motor vehicles. Aeronautics. Astronautics, Energy harvesting, Mechanical Engineering, Physics, aeroelastic flutter, TL1-4050, Acoustics, Flutter, Power (physics), Computer science, Torsion (gastropod), Aerospace engineering, finite-element method, Electrical engineering, Physical Sciences, Power Harvesting, Energy Scavenging, Nonlinear system, Vortex-Induced Vibrations in Fluid Flow, Medicine, Surgery, Wind power, three-dimensional beam element

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
gold