
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An Intelligent and Precise Agriculture Model in Sustainable Cities Based on Visualized Symptoms

Plant diseases represent one of the critical issues which lead to a major decrease in the quantity and quality of crops. Therefore, the early detection of plant diseases can avoid any losses or damage to these crops. This paper presents an image processing and a deep learning-based automatic approach that classifies the diseases that strike the apple leaves. The proposed system has been tested using over 18,000 images from the Apple Diseases Dataset by PlantVillage, including images of healthy and affected apple leaves. We applied the VGG-16 architecture to a pre-trained unlabeled dataset of plant leave images. Then, we used some other deep learning pre-trained architectures, including Inception-V3, ResNet-50, and VGG-19, to solve the visualization-related problems in computer vision, including object classification. These networks can train the images dataset and compare the achieved results, including accuracy and error rate between those architectures. The preliminary results demonstrate the effectiveness of the proposed Inception V3 and VGG-16 approaches. The obtained results demonstrate that Inception V3 achieves an accuracy of 92.42% with an error rate of 0.3037%, while the VGG-16 network achieves an accuracy of 91.53% with an error rate of 0.4785%. The experiments show that these two deep learning networks can achieve satisfying results under various conditions, including lighting, background scene, camera resolution, size, viewpoint, and scene direction.
- Middle East University Jordan
- Al-Zaytoonah University of Jordan Jordan
- Al-Zaytoonah University of Jordan Jordan
- Al al-Bayt University Jordan
- Middle East University Jordan
intelligent systems, predefined model, Agriculture (General), agriculture intelligence; precise agriculture; sustainability; predefined model; computer vision; intelligent systems, sustainability, computer vision, S1-972, agriculture intelligence, precise agriculture
intelligent systems, predefined model, Agriculture (General), agriculture intelligence; precise agriculture; sustainability; predefined model; computer vision; intelligent systems, sustainability, computer vision, S1-972, agriculture intelligence, precise agriculture
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
