Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS Cnrarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agriculture
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agriculture
Article . 2024
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of Biochar Addition to Digestate, Slurry, and Manure for Mitigating Carbon Emissions

Authors: Leonardo Verdi; Anna Dalla Marta; Simone Orlandini; Anita Maienza; Silvia Baronti; Francesco Primo Vaccari;

Evaluation of Biochar Addition to Digestate, Slurry, and Manure for Mitigating Carbon Emissions

Abstract

The contribution of animal waste storage on GHG emissions and climate change is a serious issue for agriculture. The carbon emissions that are generated from barns represent a relevant source of emissions that negatively affect the environmental performance measures of livestock production. In this experiment, CO2 and CH4 emissions from different animal wastes, namely, digestate, slurry, and manure, were evaluated both in their original form and with a biochar addition. The emissions were monitored using the static camber methodology and a portable gas analyzer for a 21-day period. The addition of biochar (at a ratio of 2:1 between the substrates and biochar) significantly reduced the emissions of both gases compared to the untreated substrates. Slurry exhibited higher emissions due to its elevated gas emission tendency. The biochar addition reduced CO2 and CH4 emissions by 26% and 21%, respectively, from the slurry. The main effect of the biochar addition was on the digestate, where the emissions decreased by 45% for CO2 and 78% for CH4. Despite a lower tendency to emit carbon-based gases of manure, biochar addition still caused relevant decreases in CO2 (40%) and CH4 (81%) emissions. Biochar reduced the environmental impacts of all treatments, with a GWP reduction of 55% for the digestate, 22% for the slurry, and 44% for the manure.

Country
Italy
Keywords

agronomy, methane, Agriculture (General), carbon dioxide, global warming potential; climate change; carbon dioxide; methane; agronomy, S1-972, climate change, global warming potential

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold