Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Agronomyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agronomy
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Agronomy
Article . 2023
Data sources: DOAJ
Digital.CSIC
Article . 2023
Data sources: Digital.CSIC
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Weed Response to ALS-Inhibitor Herbicide (Sulfosulfuron + Metsulfuron Methyl) under Increased Temperature and Carbon Dioxide

Authors: Yousef Ghazikhanlou Sani; Ali Reza Yousefi; Khalil Jamshidi; Farid Shekari; Jose L. Gonzalez-Andujar; Nicholas E. Korres;

Weed Response to ALS-Inhibitor Herbicide (Sulfosulfuron + Metsulfuron Methyl) under Increased Temperature and Carbon Dioxide

Abstract

Information on the impact of climate change on the growth of weed species and their sensitivity to herbicides could help to establish an efficient weed management strategy. Due to the excessive use of acetolactate synthase (ALS)-inhibitor herbicides, resistance to those herbicides is increasing globally. It is, thus, crucial to find out whether the efficacy of these herbicides will change in the future due to the increase in temperatures and carbon dioxide concentration. Therefore, this work aimed to evaluate the impact of temperature and carbon dioxide (CO2) changes on the growth of Amaranthus retroflexus, Bromus tectorum, Chenopodium album, and Echinochloa crus-galli, including the assessment of sulfosulfuron 75% + metsulfuron methyl 5% efficacy in these weeds. A factorial experiment was performed in a completely randomized design with a factorial arrangement (2 × 2 × 6), including two CO2 concentrations (400 and 700 ppm), two temperature regimes (30/20 °C and 34/24 °C day/night), and six herbicide rates (0, 25, 37.5, 50, 62.5, and 75 g ha−1). As a result, it was seen that temperature and CO2 concentration changes influenced the morphological variables of the weeds. The temperature regime affected the herbicide’s effectiveness on B. tectorum and E. crus-galli. The herbicide’s efficacy on weed species was affected by the interaction of herbicide rates and the temperature regime, except for on E. crus-galli; the highest efficacy was observed at 30/20 °C and at a rate 50% higher (75 g ha−1) than the recommended one (50 g ha−1). Except for E. crus-galli, increasing CO2 concentrations enhanced the herbicide efficacy and ALS enzyme activity inhibition in all the weed species, but had the greatest effect on C3 weeds. We found that temperature and CO2 levels can alter the efficacy of weed control with herbicides, with clear differences between C3 and C4 plants. As a result, increased temperature and CO2 concentration will possibly allow better control of weed species such as B. tectorum, C. album and A. retroflexus at lower doses of the ALS herbicide under investigation.

Country
Spain
Keywords

S, carbon dioxide; climate change; herbicide efficiency; temperature, Temperature, carbon dioxide, temperature, Agriculture, Herbicide efficiency, climate change, herbicide efficiency, Carbon dioxide, Climate change

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 49
    download downloads 37
  • 49
    views
    37
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC4937
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
2
Average
Average
Average
49
37
Green
gold