
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Screening for Barley Waterlogging Tolerance in Nordic Barley Cultivars (Hordeum vulgare L.) Using Chlorophyll Fluorescence on Hydroponically-Grown Plants

Waterlogging can reduce crop yield by 20%–50% or more, and lack of efficient selection methods is an obstacle in plant breeding. The methods currently used are mainly indices based on germination ability in Petri dishes and leaf chlorosis in plants grown in waterlogged soils. Cultivation in oxygen-depleted nutrient solution is the ultimate waterlogging system. Therefore methods based on root growth inhibition and on fluorescence in plant material hydroponically grown in oxygen-depleted solution were evaluated against data on biomass accumulation in waterlogged soils. Both traits were correlated with waterlogging tolerance in soil, but since it was easier to measure fluorescence, this method was further evaluated. A selection of F2 plants with high and low fluorescence revealed a small but significant screening effect in F3 plants. A test of 175 Nordic cultivars showed large variations in chlorophyll fluorescence in leaves from oxygen-stressed seedlings, indicating that adaptation to waterlogging has gradually improved over the past 40–50 years with the introduction of new cultivars onto the market. However, precipitation also increased during the period and new cultivars may have inadvertently been adapted to this while breeding barley for grain yield. The results suggest that the hydroponic method can be used for screening barley populations, breeding lines or phenotyping of populations in developing markers for quantitative trait loci.
chlorophyll fluorescence, root growth, S, Agriculture, biomass accumulation, waterlogging, biomass accumulation; chlorophyll fluorescence; Nordic barley; breeding; climate change; root growth; waterlogging, climate change, breeding, Nordic barley
chlorophyll fluorescence, root growth, S, Agriculture, biomass accumulation, waterlogging, biomass accumulation; chlorophyll fluorescence; Nordic barley; breeding; climate change; root growth; waterlogging, climate change, breeding, Nordic barley
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
