Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Animalsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Animals
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Animals
Article . 2022
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Hybrid Model for Temperature Prediction in a Sheep House

Authors: Dachun Feng; Bing Zhou; Shahbaz Gul Hassan; Longqin Xu; Tonglai Liu; Liang Cao; Shuangyin Liu; +1 Authors

A Hybrid Model for Temperature Prediction in a Sheep House

Abstract

Too high or too low temperature in the sheep house will directly threaten the healthy growth of sheep. Prediction and early warning of temperature changes is an important measure to ensure the healthy growth of sheep. Aiming at the randomness and empirical problem of parameter selection of the traditional single Extreme Gradient Boosting (XGBoost) model, this paper proposes an optimization method based on Principal Component Analysis (PCA) and Particle Swarm Optimization (PSO). Then, using the proposed PCA-PSO-XGBoost to predict the temperature in the sheep house. First, PCA is used to screen the key influencing factors of the sheep house temperature. The dimension of the input vector of the model is reduced; PSO-XGBoost is used to build a temperature prediction model, and the PSO optimization algorithm selects the main hyperparameters of XGBoost. We carried out a global search and determined the optimal hyperparameters of the XGBoost model through iterative calculation. Using the data of the Xinjiang Manas intensive sheep breeding base to conduct a simulation experiment, the results show that it is different from the existing ones. Compared with the temperature prediction model, the evaluation indicators of the PCA-PSO-XGBoost model proposed in this paper are root mean square error (RMSE), mean square error (MSE), coefficient of determination (R2), mean absolute error (MAE) , which are 0.0433, 0.0019, 0.9995, 0.0065, respectively. RMSE, MSE, and MAE are improved by 68, 90, and 94% compared with the traditional XGBoost model. The experimental results show that the model established in this paper has higher accuracy and better stability, can effectively provide guiding suggestions for monitoring and regulating temperature changes in intensive housing and can be extended to the prediction research of other environmental parameters of other animal houses such as pig houses and cow houses in the future.

Related Organizations
Keywords

particle swarm optimization, principal component analysis, Veterinary medicine, Article, intensive culture; temperature prediction; XGBoost algorithm; particle swarm optimization; principal component analysis, QL1-991, intensive culture, SF600-1100, XGBoost algorithm, temperature prediction, Zoology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold