
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enrofloxacin and Sulfamethoxazole Sorption on Carbonized Leonardite: Kinetics, Isotherms, Influential Effects, and Antibacterial Activity toward S. aureus ATCC 25923

Excessive antibiotic use in veterinary applications has resulted in water contamination and potentially poses a serious threat to aquatic environments and human health. The objective of the current study was to quantify carbonized leonardite (cLND) adsorption capabilities to remove sulfamethoxazole (SMX)- and enrofloxacin (ENR)-contaminated water and to determine the microbial activity of ENR residuals on cLND following adsorption. The cLND samples prepared at 450 °C and 850 °C (cLND450 and cLND550, respectively) were evaluated for structural and physical characteristics and adsorption capabilities based on adsorption kinetics and isotherm studies. The low pyrolysis temperature of cLND resulted in a heterogeneous surface that was abundant in both hydrophobic and hydrophilic functional groups. SMX and ENR adsorption were best described using a pseudo-second-order rate expression. The SMX and ENR adsorption equilibrium data on cLND450 and cLND550 revealed their better compliance with a Langmuir isotherm than with four other models based on 2.3-fold higher values of qmENR than qmSMX. Under the presence of the environmental interference, the electrostatic interaction was the main contributing factor to the adsorption capability. Microbial activity experiments based on the growth of Staphylococcus aureus ATCC 25923 revealed that cLND could successfully adsorb and subsequently retain the adsorbed antibiotic on the cLND surface. This study demonstrated the potential of cLND550 as a suitable low-cost adsorbent for the highly efficient removal of antibiotics from water.
- Kasetsart University Thailand
- Suranaree University of Technology Thailand
- Kasetsart University Thailand
- Centre of Excellence for Advanced Materials China (People's Republic of)
- University of Phayao Thailand
Civil and Environmental Engineering, adsorption isotherm; adsorption kinetics; antibiotic adsorption; carbonization; elovich; enrofloxacin; growth inhibition zone; intraparticle diffusion; leonardite; sulfamethoxazole, antibiotic adsorption, leonardite, RM1-950, Article, elovich, intraparticle diffusion, Hydraulic Engineering, Environmental Indicators and Impact Assessment, 660, sulfamethoxazole, carbonization, 600, 540, 541, adsorption isotherm, growth inhibition zone, Water Resource Management, Sustainability, Therapeutics. Pharmacology, Hydrology, enrofloxacin, Fresh Water Studies, adsorption kinetics
Civil and Environmental Engineering, adsorption isotherm; adsorption kinetics; antibiotic adsorption; carbonization; elovich; enrofloxacin; growth inhibition zone; intraparticle diffusion; leonardite; sulfamethoxazole, antibiotic adsorption, leonardite, RM1-950, Article, elovich, intraparticle diffusion, Hydraulic Engineering, Environmental Indicators and Impact Assessment, 660, sulfamethoxazole, carbonization, 600, 540, 541, adsorption isotherm, growth inhibition zone, Water Resource Management, Sustainability, Therapeutics. Pharmacology, Hydrology, enrofloxacin, Fresh Water Studies, adsorption kinetics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
