
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Global Review of PWR Nuclear Power Plants

doi: 10.3390/app10134434
Nuclear energy is presented as a real option in the face of the current problem of climate change and the need to reduce CO2 emissions. The nuclear reactor design with the greatest global impact throughout history and which has the most ambitious development plans is the Pressurized Water Reactor (PWR). Thus, a global review of such a reactor design is presented in this paper, utilizing the analysis of (i) technical aspects of the different variants of the PWR design implemented over the past eight years, (ii) the level of implementation of PWR nuclear power plants in the world, and (iii) a life extension scenario and future trends in PWR design based on current research and development (R&D) activity. To develop the second analysis, a statistical study of the implementation of the different PWR variants has been carried out. Such a statistical analysis is based on the operating factor, which represents the relative frequency of reactors operating around the world. The results reflect the hegemony of the western variants in the 300 reactors currently operating, highlighting the North American and French versions. Furthermore, a simulation of a possible scenario of increasing the useful life of operational PWRs up to 60 years has been proposed, seeing that in 2050 the generation capacity of nuclear PWRs power plants will decrease by 50%, and the number of operating reactors by 70%.
- "UNIVERSIDADE DA CORUNA Spain
- Catholic University of Ávila Spain
- University of Córdoba Spain
- University of A Coruña Spain
- Catholic University of Ávila Spain
Technology, pressurized water reactor, QH301-705.5, T, Physics, QC1-999, Nuclear energy, Operating factor, Engineering (General). Civil engineering (General), operating factor, nuclear energy, power, Chemistry, Power, Pressurized water reactor, TA1-2040, Biology (General), QD1-999
Technology, pressurized water reactor, QH301-705.5, T, Physics, QC1-999, Nuclear energy, Operating factor, Engineering (General). Civil engineering (General), operating factor, nuclear energy, power, Chemistry, Power, Pressurized water reactor, TA1-2040, Biology (General), QD1-999
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).54 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
