Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2020
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Robust Adaptive Overcurrent Relay Coordination Scheme for Wind-Farm-Integrated Power Systems Based on Forecasting the Wind Dynamics for Smart Energy Systems

Authors: Mian Rizwan; Lucheng Hong; Muhammad Waseem; Shafiq Ahmad; Mohamed Sharaf; Muhammad Shafiq;

A Robust Adaptive Overcurrent Relay Coordination Scheme for Wind-Farm-Integrated Power Systems Based on Forecasting the Wind Dynamics for Smart Energy Systems

Abstract

Conventional protection schemes in the distribution system are liable to suffer from high penetration of renewable energy source-based distributed generation (RES-DG). The characteristics of RES-DG, such as wind turbine generators (WTGs), are stochastic due to the intermittent behavior of wind dynamics (WD). It can fluctuate the fault current level, which in turn creates the overcurrent relay coordination (ORC) problem. In this paper, the effects of WD such as wind speed and direction on the short-circuit current contribution from a WTG is investigated, and a robust adaptive overcurrent relay coordination scheme is proposed by forecasting the WD. The seasonal autoregression integrated moving average (SARIMA) and artificial neuro-fuzzy inference system (ANFIS) are implemented for forecasting periodic and nonperiodic WD, respectively, and the fault current level is calculated in advance. Furthermore, the ORC problem is optimized using hybrid Harris hawks optimization and linear programming (HHO–LP) to minimize the operating times of relays. The proposed algorithm is tested on the modified IEEE-8 bus system with wind farms, and the overcurrent relay (OCR) miscoordination caused by WD is eliminated. To further prove the effectiveness of the algorithm, it is also tested in a typical wind-farm-integrated substation. Compared to conventional protection schemes, the results of the proposed scheme were found to be promising in fault isolation with a remarkable reduction in the total operation time of relays and zero miscoordination.

Related Organizations
Keywords

Technology, QH301-705.5, T, Physics, QC1-999, adaptive neural network-based fuzzy inference system (ANFIS), Engineering (General). Civil engineering (General), system stability, wind dynamics, smart energy systems, Chemistry, seasonal autoregression integrated moving average (SARIMA), protection coordination, TA1-2040, Biology (General), wind-speed forecasting, QD1-999

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
gold