

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Predicting Hospital Admissions to Reduce Crowding in the Emergency Departments

doi: 10.3390/app122110764
handle: 2117/375678
Having an increasing number of patients in the emergency department constitutes an obstacle to the admissions process and hinders the emergency department (ED)’s ability to deal with the continuously arriving demand for new admissions. In addition, forecasting is an important aid in many areas of hospital management, including elective surgery scheduling, bed management, and staff resourcing. Therefore, this paper aims to develop a precise prediction model for admissions in the Integral Healthcare System for Public Use in Catalonia. These models assist in reducing overcrowding in emergency rooms and improve the quality of care offered to patients. Data from 60 EDs were analyzed to determine the likelihood of hospital admission based on information readily available at the time of arrival in the ED. The first part of the study targeted the obtention of models with high accuracy and area under the curve (AUC), while the second part targeted the obtention of models with a sensitivity higher than 0.975 and analyzed the possible benefits that could come from the application of such models. From the 3,189,204 ED visits included in the study, 11.02% ended in admission to the hospital. The gradient boosting machine method was used to predict a binary outcome of either admission or discharge.
- Universitat Polite`cnica de Catalunya Spain
- University of Cambridge United Kingdom
- Universitat Politècnica de Catalunya Spain
Technology, :Informàtica::Intel·ligència artificial::Aprenentatge automàtic [Àrees temàtiques de la UPC], QH301-705.5, QC1-999, Optimització matemàtica, Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic, digital health, gradient boosting, :Matemàtiques i estadística::Investigació operativa [Àrees temàtiques de la UPC], Machine learning, Aprenentatge automàtic, Àrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa, Hospitals -- Serveis d'urgències, digital health; machine learning; gradient boosting, Biology (General), QD1-999, T, Physics, Mathematical optimization, Engineering (General). Civil engineering (General), Chemistry, machine learning, Gradient boosting, TA1-2040, Digital health, Hospitals -- Emergency services
Technology, :Informàtica::Intel·ligència artificial::Aprenentatge automàtic [Àrees temàtiques de la UPC], QH301-705.5, QC1-999, Optimització matemàtica, Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic, digital health, gradient boosting, :Matemàtiques i estadística::Investigació operativa [Àrees temàtiques de la UPC], Machine learning, Aprenentatge automàtic, Àrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa, Hospitals -- Serveis d'urgències, digital health; machine learning; gradient boosting, Biology (General), QD1-999, T, Physics, Mathematical optimization, Engineering (General). Civil engineering (General), Chemistry, machine learning, Gradient boosting, TA1-2040, Digital health, Hospitals -- Emergency services
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 54 download downloads 62 - 54views62downloads
Data source Views Downloads UPCommons. Portal del coneixement obert de la UPC 54 62


