Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterisation of Physiological Responses to Odours in Autism Spectrum Disorders: A Preliminary Study

Authors: Lara Pereira; Joana Grave; Janina Noll; Birgit Derntl; Sandra C. Soares; Susana Brás; Raquel Sebastião;

Characterisation of Physiological Responses to Odours in Autism Spectrum Disorders: A Preliminary Study

Abstract

Abnormal sensory perception is among the earliest symptoms of autism spectrum disorders (ASD). Despite mixed findings, olfactory perception seems to be altered in ASD. There is also evidence that automatic responses to odours can serve as biomarkers of ASD. However, this potential use of odour-based biomarkers for ASD is still underexplored. In this study, we aimed to investigate whether physiological responses to social and non-social odours, measured with electrocardiography (ECG) and facial electromyography (EMG), can be used to characterise and predict ASD in adults. For that, we extracted 32 signal features from a previously collected database of 11 adults with ASD and 48 adults with typical development (TD). Firstly, non-parametric tests were performed, showing significant differences between the ASD and the TD groups in 10 features. Secondly, a k-nearest-neighbour classifier with a leave-one-out strategy was employed, obtaining an F1-score of 67%. Although caution is needed due to the small sample size, this study provides preliminary evidence supporting the use of physiological responses to social and non-social odours as a potential diagnostic tool for ASD in adults.

Countries
Germany, Portugal
Keywords

Technology, QH301-705.5, autism spectrum disorders, QC1-999, 530, Machine learning, Biology (General), QD1-999, facial EMG, ECG, T, Physics, 600, Autism spectrum disorders, 540, Engineering (General). Civil engineering (General), Olfaction, Chemistry, machine learning, odours, TA1-2040, Facial EMG, Odours, olfaction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold