Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microwave Pyrolysis of Woody Biomass: Influence of Radiation Power on the Composition of Conversion Products

Authors: Anatoliy Shvets; Ksenia Vershinina; Kirill Vinogrodskiy; Geniy Kuznetsov;

Microwave Pyrolysis of Woody Biomass: Influence of Radiation Power on the Composition of Conversion Products

Abstract

Biomass is a promising resource for the production of renewable energy, liquid fuels, and chemicals. Microwave pyrolysis is one of the directions of multifunctional conversion of raw materials. In the present work, the effect of microwave power on the characteristics of sawdust pyrolysis is studied. With an increase in power, the maximum yield of combustible gases increased, and a large proportion of the total pyrolysis time included the useful time for the release of gases. An increase in power affected the yield of individual gases non-linearly and on a different scale. The average yield of CO and CO2 remained practically unchanged when the microwave power was increased from 840 to 1760 W. However, with a further increase in power to 2200 W, there was a significant increase in the average yield of CO and CO2 (2.5 and 1.4 times, respectively). An increase in power by 2.6 times contributed to an increase in the average yield of CH4 by 5 times and H2 by 3.8 times. The increased power of microwaves contributed to the degassing of wood and intensification of secondary pyrolysis reactions, which resulted in a decrease in the mass of the solid residue by 5.3 times and a decrease in the liquid product yield by 2.7 times. A comprehensive analysis using MCDA showed that an increase in energy costs with an increase in microwave power is integrally compensated by an improvement in pyrolysis performance. So, when the power was varied from 840 W to 2200 W, the pyrolysis efficiency indicator increased by 1.3–2.2 times, considering the growth in energy consumption.

Keywords

Technology, QH301-705.5, QC1-999, microwave power, microwave pyrolysis, Biology (General), QD1-999, biomass, T, Physics, biomass; microwave pyrolysis; pyrolysis gas; microwave power; efficiency analysis; MCDA, MCDA, Engineering (General). Civil engineering (General), Chemistry, efficiency analysis, pyrolysis gas, TA1-2040

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
gold