
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evolution of Burned Area in Forest Fires under Climate Change Conditions in Southern Spain Using ANN

doi: 10.3390/app9194155
Wildfires in Mediterranean regions have become a serious problem, and it is currently the main cause of forest loss. Numerous prediction methods have been applied worldwide to estimate future fire activity and area burned in order to provide a stable basis for future allocation of fire-fighting resources. The present study investigated the performance of an artificial neural network (ANN) in burned area size prediction and to assess the evolution of future wildfires and the area concerned under climate change in southern Spain. The study area comprised 39.41 km2 of land burned from 2000 to 2014. ANNs were used in two subsequential phases: classifying the size of the wildfires and predicting the burned surface for fires larger than 30,000 m2. Matrix of confusion and 10-fold cross-validations were used to evaluate ANN classification and mean absolute deviation, root mean square error, mean absolute percent error and bias, which were the metrics used for burned area prediction. The success rate achieved was above 60–70% depending on the zone. An average temperature increase of 3 °C and a 20% increase in wind speed during 2071–2100 results in a significant increase of the number of fires, up to triple the current figure, resulting in seven times the average yearly burned surface depending on the zone and the climate change scenario.
- IE University Spain
- IE University Spain
- Polytechnic University Japan
- Polytechnic University Japan
- University of Murcia Spain
Technology, QH301-705.5, T, Physics, QC1-999, Engineering (General). Civil engineering (General), wildfire, Chemistry, climate change, Spain, confusion matrix, spain, TA1-2040, Biology (General), ANN, ann, QD1-999, k-fold cross-validation
Technology, QH301-705.5, T, Physics, QC1-999, Engineering (General). Civil engineering (General), wildfire, Chemistry, climate change, Spain, confusion matrix, spain, TA1-2040, Biology (General), ANN, ann, QD1-999, k-fold cross-validation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
