
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
High-Resolution Temperature Variability Reconstructed from Black Pine Tree Ring Densities in Southern Spain

handle: 20.500.12030/5122
The presence of an ancient, high-elevation pine forest in the Natural Park of Sierras de Cazorla in southern Spain, including some trees reaching >700 years, stimulated efforts to develop high-resolution temperature reconstructions in an otherwise drought-dominated region. Here, we present a reconstruction of spring and fall temperature variability derived from black pine tree ring maximum densities reaching back to 1350 Coefficient of Efficiency (CE). The reconstruction is accompanied by large uncertainties resulting from low interseries correlations among the single trees and a limited number of reliable instrumental stations in the study region. The reconstructed temperature history reveals warm conditions during the early 16th and 19th centuries that were of similar magnitude to the warm temperatures recorded since the late 20th century. A sharp transition from cold conditions in the late 18th century (t1781–1810 = −1.15 °C ± 0.64 °C) to warm conditions in the early 19th century (t1818–1847 = −0.06 °C ± 0.49 °C) is centered around the 1815 Tambora eruption (t1816 = −2.1 °C ± 0.55 °C). The new reconstruction from southern Spain correlates significantly with high-resolution temperature histories from the Pyrenees located ~600 km north of the Cazorla Natural Park, an association that is temporally stable over the past 650 years (r1350–2005 > 0.3, p < 0.0001) and particularly strong in the high-frequency domain (rHF > 0.4). Yet, only a few of the reconstructed cold extremes (1453, 1601, 1816) coincide with large volcanic eruptions, suggesting that the severe cooling events in southern Spain are controlled by internal dynamics rather than external (volcanic) forcing.
- State University of New York at Potsdam United States
- Johannes Gutenberg-University Germany
- SUNY at Albany United States
- Masaryk University Czech Republic
- Johannes Gutenberg University of Mainz Germany
Pinus nigra, maximum latewood density, 550, ddc:550, forest ecosystems, dendrochronology, Mediterranean, 550 Geowissenschaften, Cazorla, <i>Pinus nigra</i>, climate change, 550 Earth sciences, Meteorology. Climatology, QC851-999, climate reconstruction
Pinus nigra, maximum latewood density, 550, ddc:550, forest ecosystems, dendrochronology, Mediterranean, 550 Geowissenschaften, Cazorla, <i>Pinus nigra</i>, climate change, 550 Earth sciences, Meteorology. Climatology, QC851-999, climate reconstruction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
