Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospherearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Atmosphere
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Atmosphere
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Main Emission Sources and Health Risks of Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons at Three Typical Sites in Hanoi

Authors: Hao Zhang; Chau-Thuy Pham; Bin Chen; Xuan Zhang; Yan Wang; Pengchu Bai; Lulu Zhang; +4 Authors

Main Emission Sources and Health Risks of Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons at Three Typical Sites in Hanoi

Abstract

Particulate matter-bound polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) were first systematically studied in downtown (XT), suburban (GL) and rural (DA) sites in winter and summer in Hanoi, Vietnam, from 2019 to 2022. The mean concentrations of PAHs and NPAHs ranged from 0.76 ng m−3 to 50.2 ng m−3 and 6.07 pg m−3 to 1.95 ng m−3, respectively. The concentrations of PAHs and NPAHs in winter were higher than in summer, except for NPAHs in XT. We found the benzo[a]pyrene (BaP)/benzo[ghi]perylene (BgPe) ratio could effectively identify biomass burning in this study, in which a higher [BaP]/[BgPe] value indicates a greater effect of biomass burning on PAHs and NPAHs. The results indicated that atmospheric PAHs and NPAHs were mainly affected by motor vehicles (especially the unique motorcycles in Southeast Asia) in the summer in Hanoi. In winter, all sites were affected by the burning of rice straw to varying degrees, especially DA. The incremental lifetime cancer risk (ILCR) in Hanoi was first determined through ingestion, inhalation and dermal absorption. The results showed that residents in Hanoi faced high health risks, while females experienced higher health risks than males. The ingestion and dermal pathways indicated higher exposure risks than the usually considered inhalation pathway.

Related Organizations
Keywords

nitro-polycyclic aromatic hydrocarbons, biomass, air pollution, polycyclic aromatic hydrocarbons, Hanoi, Meteorology. Climatology, QC851-999, air pollution; polycyclic aromatic hydrocarbons; nitro-polycyclic aromatic hydrocarbons; biomass; Hanoi

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold