
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Recent Advancements on the CVD of Graphene on Copper from Ethanol Vapor

doi: 10.3390/c6010014
Chemical vapor deposition (CVD) on metal foils is regarded as the most effective method to produce large-area graphene with properties in line with the requirements of an extensive range of electronic and optical applications. For the CVD of graphene, ethanol is a versatile carbon source alternative to the widely used methane. In this review we report on the current progress in this field showing how the CVD parameters can be modulated to gain full microstructural control on graphene grown on Cu foils. Using ethanol vapor, graphene can be grown as a continuous film with mono- or multi-layer thickness, and also in the form of isolated crystals on pre-oxidized Cu substrates. Overall, ethanol-CVD allows a controllable degree of crystallinity and tunable electrical/optical characteristics in the grown samples. In turn, this control translates into a superior versatility for device design and related applications.
raman spectroscopy, QD241-441, Organic chemistry, ethanol, chemical vapor deposition
raman spectroscopy, QD241-441, Organic chemistry, ethanol, chemical vapor deposition
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
