

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ca-based Catalysts for the Production of High-Quality Bio-Oils from the Catalytic Co-Pyrolysis of Grape Seeds and Waste Tyres

doi: 10.3390/catal9120992
handle: 10261/196969
The catalytic co-pyrolysis of grape seeds and waste tyres for the production of high-quality bio-oils was studied in a pilot-scale Auger reactor using different low-cost Ca-based catalysts. All the products of the process (solid, liquid, and gas) were comprehensively analysed. The results demonstrate that this upgrading strategy is suitable for the production of better-quality bio-oils with major potential for use as drop-in fuels. Although very good results were obtained regardless of the nature of the Ca-based catalyst, the best results were achieved using a high-purity CaO obtained from the calcination of natural limestone at 900 °C. Specifically, by adding 20 wt% waste tyres and using a feedstock to CaO mass ratio of 2:1, a practically deoxygenated bio-oil (0.5 wt% of oxygen content) was obtained with a significant heating value of 41.7 MJ/kg, confirming its potential for use in energy applications. The total basicity of the catalyst and the presence of a pure CaO crystalline phase with marginal impurities seem to be key parameters facilitating the prevalence of aromatisation and hydrodeoxygenation routes over the de-acidification and deoxygenation of the vapours through ketonisation and esterification reactions, leading to a highly aromatic biofuel. In addition, owing to the CO2-capture effect inherent to these catalysts, a more environmentally friendly gas product was produced, comprising H2 and CH4 as the main components.
- University of Zaragoza Spain
- Spanish National Research Council Spain
- Instituto de Carboquímica Spain
co-pyrolysis, biomass, bio-oils, waste tyres, Bio-oils, Auger reactor, Co-pyrolysis, Ca-based catalyst, Waste tyres, Biomass
co-pyrolysis, biomass, bio-oils, waste tyres, Bio-oils, Auger reactor, Co-pyrolysis, Ca-based catalyst, Waste tyres, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 47 download downloads 218 - 47views218downloads
Data source Views Downloads DIGITAL.CSIC 47 218


