Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Catalystsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Catalysts
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Catalysts
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Catalytic Hydrodeoxygenation of Fast Pyrolysis Bio-Oil from Saccharina japonica Alga for Bio-Oil Upgrading

Authors: Hee Chul Woo; Hyun Tae Hwang; Jae Hyung Choi; Seung-Soo Kim; Hoang Vu Ly; Jinsoo Kim;

Catalytic Hydrodeoxygenation of Fast Pyrolysis Bio-Oil from Saccharina japonica Alga for Bio-Oil Upgrading

Abstract

Biomass conversion via pyrolysis has been regarded as a promising solution for bio-oil production. Compared to fossil fuels, however, the pyrolysis bio-oils from biomass are corrosive and unstable due to relatively high oxygen content. Thus, an upgrading of bio-oil is required to reduce O component while improving stability in order to use it directly as fuel sources or in industrial processes for synthesizing chemicals. The catalytic hydrodeoxygenation (HDO) is considered as one of the promising methods for upgrading pyrolysis bio-oil. In this research, the HDO was studied for various catalysts (HZSM-5, metal, and metal-phosphide catalysts) to improve the quality of bio-oil produced by fast pyrolysis of Saccharina japonica (SJ) in a fluidized-bed reactor. The HDO processing was carried out in an autoclave at 350 °C and different initial pressures (3, 6, and 15 bar). During HDO, the oxygen species in the bio-oil was removed primarily via formation of CO2 and H2O. Among the gases produced through HDO, CO2 was observed to be most abundant. The C/O ratio of produced bio-oil increased when CoMoP/γ-Al2O3, Co/γ-Al2O3, Fe/γ-Al2O3, or HZSM-5 was used. The Co/γ-Al2O3 resulted in higher HDO performance than other catalysts. The bio-oil upgraded with Co/γ-Al2O3 showed high HHV (34.41 MJ/kg). With the use of catalysts, the kerosene-diesel fraction (carbon number C12–C14) was increased from 36.17 to 38.62–48.92 wt.%.

Related Organizations
Keywords

<i>S. japonica</i> alga; fast pyrolysis; upgrading bio-oil; catalytic hydrodeoxygenation; autoclave

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
gold