Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Clean Technologiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clean Technologies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clean Technologies
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Machine Learning Applications in Renewable Energy (MLARE) Research: A Publication Trend and Bibliometric Analysis Study (2012–2021)

Authors: Samuel-Soma M. Ajibade; Festus Victor Bekun; Festus Fatai Adedoyin; Bright Akwasi Gyamfi; Anthonia Oluwatosin Adediran;

Machine Learning Applications in Renewable Energy (MLARE) Research: A Publication Trend and Bibliometric Analysis Study (2012–2021)

Abstract

This study examines the research climate on machine learning applications in renewable energy (MLARE). Therefore, the publication trends (PT) and bibliometric analysis (BA) on MLARE research published and indexed in the Elsevier Scopus database between 2012 and 2021 were examined. The PT was adopted to deduce the major stakeholders, top-cited publications, and funding organizations on MLARE, whereas BA elucidated critical insights into the research landscape, scientific developments, and technological growth. The PT revealed 1218 published documents comprising 46.9% articles, 39.7% conference papers, and 6.0% reviews on the topic. Subject area analysis revealed MLARE research spans the areas of science, technology, engineering, and mathematics among others, which indicates it is a broad, multidisciplinary, and impactful research topic. The most prolific researcher, affiliations, country, and funder are Ravinesh C. Deo, National Renewable Energy Laboratory, United States, and the National Natural Science Foundation of China, respectively. The most prominent journals on the top are Applied Energy and Energies, which indicates that journal reputation and open access are critical considerations for the author’s choice of publication outlet. The high productivity of the major stakeholders in MLARE is due to collaborations and research funding support. The keyword co-occurrence analysis identified four (4) clusters or thematic areas on MLARE, which broadly describe the systems, technologies, tools/technologies, and socio-technical dynamics of MLARE research. Overall, the study showed that ML is critical to the prediction, operation, and optimization of renewable energy technologies (RET) along with the design and development of RE-related materials.

Country
Turkey
Keywords

deep learning, Environmental engineering, TA170-171, algorithms, unsupervised learning, supervised learning, renewable energy, Environmental technology. Sanitary engineering, machine learning, machine learning; algorithms; supervised learning; unsupervised learning; deep learning; renewable energy; forecasting; optimization, TD1-1066

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
gold