
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modelling of Electric Power Generation Plant Based on Gas Turbines with Agricultural Biomass Fuel

handle: 10953/3364
To ensure the survival of society, an enormous amount of energy is required to sustain the economic and social development of communities. In addition, there is a pressing need to achieve significant reductions in climate change and the associated costs of implementing systems based on traditional energy sources, as well as addressing the issue of providing electricity to isolated areas. In rural environments, there is an alternative energy source with enormous potential, agricultural biomass, which can produce electrical and thermal energy and can progressively help to reduce dependence on fossil fuels. The purpose of this work is to present a dynamic simulation model of a power generation plant that uses the Joule Brayton thermodynamic cycle, based on a gas turbine which is fueled by residual agricultural biomass; the cycle converts mechanical energy to electrical energy. The problem is approached through the characterization of the biomass, mathematical models of the plant components, and simulation of the system behavior in different scenarios. The simulations are processed in Matlab/Simulink, which allows the model to be verified, validating the equilibrium relationship between generation and load demand.
- District University of Bogotá Colombia
- District University of Bogotá Colombia
- Universidad Distrital Francisco Jose de Caldas Colombia
- Universidad ECCI Colombia
- University of Jaén Spain
gas turbine, 330, TK7800-8360, simulation, 620, integrated models, biomass plant, mechanical to electrical energy conversion, integrated models; simulation; biomass plant; gas turbine; mechanical to electrical energy conversion, Electronics
gas turbine, 330, TK7800-8360, simulation, 620, integrated models, biomass plant, mechanical to electrical energy conversion, integrated models; simulation; biomass plant; gas turbine; mechanical to electrical energy conversion, Electronics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
