
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Techno-Economic Assessment of Turboexpander Application at Natural Gas Regulation Stations

doi: 10.3390/en12040755
During the natural gas pipeline transportation process, gas stream pressure is reduced at natural gas regulation stations (GRS). Natural gas pressure reduction is accompanied by energy dissipation which results in irreversible exergy losses in the gas stream. Energy loss depends on the thermodynamic parameters of the natural gas stream on inlet and outlet gas pressure regulation and metering stations. Recovered energy can be used for electricity generation when the pressure regulator is replaced with an expander to drive electric energy generation. To ensure the correct operation of the system, the natural gas stream should be heated, on inlet to expander. This temperature should be higher than the gas stream during choking in the pressure regulator. The purpose of this research was to investigate GRS operational parameters which influence the efficiency of the gas expansion process and to determine selection criteria for a cost-effective application of turboexpanders at selected GRS, instead of pressure regulators. The main novelty presented in this paper shows investigation on discounted payback period (DPP) equation which depends on the annual average natural gas flow rate through the analyzed GRS, average annual level of gas expansion, average annual natural gas purchase price, average annual produced electrical energy sale price and CAPEX.
energy conversion, Technology, energy recovery, T, turboexpander, natural gas, natural gas regulation station, energy system analysis, pressure regulator
energy conversion, Technology, energy recovery, T, turboexpander, natural gas, natural gas regulation station, energy system analysis, pressure regulator
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
