Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2019
Data sources: VIRTA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2019
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Utilizing Asphalt Heat Energy in Finnish Climate Conditions

Authors: Hiltunen; Erkki; Mäkiranta, Anne;

Utilizing Asphalt Heat Energy in Finnish Climate Conditions

Abstract

Geothermal energy is a form of renewable energy, which offers carbon-free solutions for heating and cooling spaces. This study evaluates the use of renewable asphalt heat energy in frozen ground conditions. Asphalt heat energy can be harnessed using a low-energy network, heat collection pipes and heat pumps. This study measured temperatures under the asphalt layer during a three-year period between 2014 and 2017. Measurements were made using a distributed temperature sensing method based on light scattering. Temperatures taken at four different depths under the asphalt (0.5 m, 1.0 m, 3.0 m and 10 m) are presented here. These temperatures are compared with that detected at the depth at which the temperature remains constant all year round. The temperature difference curve between 0.5 m depth and the constant soil temperature depth indicates that from April to October the soil at 0.5 m depth is warming and the temperature difference is positive, even as much as 18 °C. Instead, at the 3.0 m depth, the difference curve is smoother and it varies only from −5 to +5 °C. It is positive from June to November. The surface layer (0 m–1.0 m) is suitable for harvesting heat that can be stored in a deeper (1.5 m–3.0 m) purpose-built storage or in a bedrock heat battery. The calculated heat capacities indicate that asphalt energy, because of high temperatures, is a noteworthy renewable energy source.

Country
Finland
Keywords

Technology, ta222, T, low-energy network, 541, distributed temperature sensing (DTS), geoenergy, distributed temperature sensing (DTS) measurement, urban energy; geoenergy; low-energy network; distributed temperature sensing (DTS) measurement, fi=Energiatekniikka|en=Energy Technology|, urban energy

Powered by OpenAIRE graph
Found an issue? Give us feedback