
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of Salt Concentration, Solvent Donor Number and Coordination Structure on the Variation of the Li/Li+ Potential in Aprotic Electrolytes

The use of concentrated aprotic electrolytes in lithium batteries provides numerous potential applications, including the use of high-voltage cathodes and Li-metal anodes. In this paper, we aim at understanding the effect of salt concentration on the variation of the Li/Li+ Quasi-Reference Electrode (QRE) potential in Tetraglyme (TG)-based electrolytes. Comparing the obtained results to those achieved using Dimethyl sulfoxide DMSO-based electrolytes, we are now able to take a step forward and understand how the effect of solvent coordination and its donor number (DN) is attributed to the Li-QRE potential shift. Using a revised Nernst equation, the alteration of the Li redox potential with salt concentration was determined accurately. It is found that, in TG, the Li-QRE shift follows a different trend than in DMSO owing to the lower DN and expected shorter lifespan of the solvated cation complex.
Technology, DDC 540 / Chemistry & allied sciences, info:eu-repo/classification/ddc/540, T, high concentrated electrolytes, ferrocene, Lithium, nernst equation, reference electrode, donor number, cyclic voltammetry, lithium, Nernst equation, Ferrocene, Ferrocen
Technology, DDC 540 / Chemistry & allied sciences, info:eu-repo/classification/ddc/540, T, high concentrated electrolytes, ferrocene, Lithium, nernst equation, reference electrode, donor number, cyclic voltammetry, lithium, Nernst equation, Ferrocene, Ferrocen
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
