Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/1p...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/fj...
Other literature type . 2020
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands

منهجية تحليل قرصة رقمية للتحجيم الأمثل لنظام توليد ثلاثي مركزي مع متطلبات طاقة متغيرة
Authors: Khairulnadzmi Jamaluddin; Sharifah Rafidah Wan Alwi; Khaidzir Hamzah; Jiří Jaromír Klemeš;

A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands

Abstract

The energy and power sectors are critical sectors, especially as energy demands rise every year. Increasing energy demand will lead to an increase in fuel consumption and CO2 emissions. Improving the thermal efficiency of conventional power systems is one way to reduce fuel consumption and carbon emissions. The previous study has developed a new methodology called Trigeneration System Cascade Analysis (TriGenSCA) to optimise the sizing of power, heating, and cooling in a trigeneration system for a Total Site system. However, the method only considered a single period on heating and cooling demands. In industrial applications, there are also batches, apart from continuous plants. The multi-period is added in the analysis to meet the time constraints in batch plants. This paper proposes the development of an optimal trigeneration system based on the Pinch Analysis (PA) methodology by minimizing cooling, heating, and power requirements, taking into account energy variations in the total site energy system. The procedure involves seven steps, which include data extraction, identification of time slices, Problem Table Algorithm, Multiple Utility Problem Table Algorithm, Total Site Problem Table Algorithm, TriGenSCA, and Trigeneration Storage Cascade Table (TriGenSCT). An illustrative case study is constructed by considering the trigeneration Pressurized Water Reactor Nuclear Power Plant (PWR NPP) and four industrial plants in a Total Site system. Based on the case study, the base fuel of the trigeneration PWR NPP requires 14 t of Uranium-235 to an average demand load of 93 GWh/d. The results of trigeneration PWR NPP with and without the integration of the Total Site system is compared and proven that trigeneration PWR NPP with integration is a suitable technology that can save up to 0.2% of the equivalent annual cost and 1.4% of energy compared to trigeneration PWR NPP without integration.

Country
Malaysia
Keywords

Optimization, Technology, Energy Efficiency, Computational Mechanics, Aerospace Engineering, FOS: Mechanical engineering, Organic chemistry, Total Site Heat Integration, Automotive engineering, TP Chemical technology, Thermal energy storage, Environmental science, Process integration, Cooling Applications, Engineering, Pinch analysis, Pinch Analysis, State-of-the-Art in Process Optimization under Uncertainty, Sizing, Waste management, Biology, Ecology, T, trigeneration system; Pinch Analysis; batch process plants; Total Site Heat Integration; trigeneration system cascade analysis, 600, Heat Transfer to Supercritical Fluids in Channels, Mechanical engineering, Nuclear Reactor Technology and Development, Chemistry, Control and Systems Engineering, FOS: Biological sciences, Physical Sciences, Water cooling, trigeneration system, Process engineering, trigeneration system cascade analysis, batch process plants

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
gold