
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice (Oryza sativa L.) Cultivation

doi: 10.3390/en13082070
The agro-environmental impact of supplemented biochar manure pellet fertilizer (SBMPF) application was evaluated by exploring changes of the chemical properties of paddy water and soil, carbon sequestration, and grain yield during rice cultivation. The treatments consisted of (1) the control (no biochar), (2) pig manure compost pellet (PMCP), (3) biochar manure pellets (BMP) with urea solution heated at 60 °C (BMP-U60), (4) BMP with N, P, and K solutions at room temperature (BMP-NPK), and (5) BMP with urea and K solutions at room temperature (BMP-UK). The NO3−–N and PO4−–P concentrations in the control and PMCP in the paddy water were relatively higher compared to SBMPF applied plots. For paddy soil, NH4+–N concentration in the control was lower compared to the other SBMPFs treatments 41 days after rice transplant. Additionally, it is possible that the SBMPFs could decrease the phosphorus levels in agricultural ecosystems. Also, the highest carbon sequestration was 2.67 tonnes C ha−1 in the BMP-UK treatment, while the lowest was 1.14 tonnes C ha−1 in the BMP-U60 treatment. The grain yields from the SBMPFs treatments except for the BMP-UK were significantly higher than the control. Overall, it appeared that the supplemented BMP-NPK application was one of the best SBMPFs considered with respect to agro-environmental impacts during rice cultivation.
- Louisiana State University United States
- National Institute of Agricultural Science and Technology Korea (Republic of)
Technology, rice paddy water and soil system, nutrient release, slow-release fertilizer, T, Mitigation of CO<sub>2</sub>-equiv.
Technology, rice paddy water and soil system, nutrient release, slow-release fertilizer, T, Mitigation of CO<sub>2</sub>-equiv.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
